The effect of stress relieving treatment on mechanical properties and microstructure of different welding areas of A517 steel

2017 ◽  
Vol 4 (12) ◽  
pp. 126508 ◽  
Author(s):  
Hassan Sharifi ◽  
Solyman Raisi ◽  
Morteza Tayebi
Author(s):  
Yuriy Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of harmful tensile residual stresses and introducing of compressive residual stresses into surface layers of a material, decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. The UP technique is based on the combined effect of high frequency impacts of special strikers and ultrasonic oscillations in treated material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


2012 ◽  
Vol 557-559 ◽  
pp. 191-197 ◽  
Author(s):  
Yun Xue Jin ◽  
Kai Yue Li ◽  
Hong Mei Chen ◽  
Hong Fu Xiang

In this paper, initial Ti-6Al-4V seamless tube was prepared and cold rolled to a final size of 32*2, and the microstructure and mechanical properties development was investigated, and the (0002) and (10 -10) texture was measured on XRD, pole figure calculated by Microsoft of Labotex. Pass between annealing was taken for stress-relieving, heat-treatment parameter was 800°C-1hr, furnace cooling to 500°C and then air cooling to room temperature. The results show that rolling process result in effective grain refinement and mechanical properties improvement after several rolling passes. The increase number of rolling pass improves strength but reduce the elongation, annealing improve elongation, reduce strength. A trend of texture reorientation was found in this paper also, textures of materials rolled by deformation rate were compared, different deformation rate effect texture evolution has been proved.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Zhen Nie ◽  
Yuanqi Li ◽  
Yehua Wang

It is highly important to clarify the high-temperature mechanical properties in the design of cold-formed steel (CFS) structures under fire conditions due to the unique deterioration feature in material properties under fire environment and associated reduction to the mechanical performance of members. This paper presents the mechanical properties of widely used steels for cold-formed steel structures at elevated temperatures. The coupons were extracted from original coils of proposed full annealed steels (S350 and S420, with nominal yielding strengths 280 MPa and 350 MPa) and proposed stress relieving annealed steels (G500, with nominal yielding strength 500 MPa) for CFS structures with thickness of 1.0 mm and 1.2 mm, and a total of nearly 50 tensile tests were carried out by steady-state test method for temperatures ranging from 20 to 700°C. Based on the tests, material properties including the yield strengths, ultimate strengths, the elasticity modulus, and the stress-strain curve were obtained. Meanwhile, the ductility of steels for CFS structures was discussed. Then, the temperature-dependent retention factors of yield strengths and elasticity modulus were compared to those provided by design codes and former researchers. Finally, a set of prediction equations of the mechanical properties for steels for CFS structures at elevated temperatures was proposed depending on existing tests data.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3328
Author(s):  
Róbert Bidulský ◽  
Jana Bidulská ◽  
Federico Simone Gobber ◽  
Tibor Kvačkaj ◽  
Patrik Petroušek ◽  
...  

Additive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments. Mechanical properties at 298, 77 and 4.2 K from tensile testing are presented together with fracture surfaces investigated by field emission scanning electron microscopy. The results show that high tensile strength at cryogenic temperature is characteristic for all samples, with ultimate tensile strength as high as 1246 MPa at 4.2 K and 55% maximum total elongation at 77 K. This study can constitute a solid basis for investigating 316L components by LPBF for specific applications in cryogenic conditions.


2020 ◽  
Vol 65 (4) ◽  
pp. 179-190
Author(s):  
Yuir Kudryavtsev

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UIT/UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UIT/UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UIT/UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The results of fatigue testing of large-scale welded specimens in as-welded condition and after application of UIT/UP are considered in this paper. It is shown that UIT/UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 321 ◽  
Author(s):  
Junjie He ◽  
Duosheng Li ◽  
Wugui Jiang ◽  
Liming Ke ◽  
Guohua Qin ◽  
...  

This article investigated the microstructure of Ti6Al4V that was fabricated via selective laser melting; specifically, the mechanism of martensitic transformation and relationship among parent β phase, martensite (α’) and newly generated β phase that formed in the present experiments were elucidated. The primary X-ray diffraction (XRD), transmission electron microscopy (TEM) and tensile test were combined to discuss the relationship between α’, β phase and mechanical properties. The average width of each coarse β columnar grain is 80–160 μm, which is in agreement with the width of a laser scanning track. The result revealed a further relationship between β columnar grain and laser scanning track. Additionally, the high dislocation density, stacking faults and the typical ( 10 1 ¯ 1 ) twinning were identified in the as-built sample. The twinning was filled with many dislocation lines that exhibited apparent slip systems of climbing and cross-slip. Moreover, the α + β phase with fine dislocation lines and residual twinning were observed in the stress relieving sample. Furthermore, both as-built and stress-relieved samples had a better homogeneous density and finer grains in the center area than in the edge area, displaying good mechanical properties by Feature-Scan. The α’ phase resulted in the improvement of tensile strength and hardness and decrease of plasticity, while the newly generated β phase resulted in a decrease of strength and enhancement of plasticity. The poor plasticity was ascribed to the different print mode, remained support structures and large thermal stresses.


Author(s):  
M. M. Ibrahim ◽  
H. G. Mohamed ◽  
Y. E. Tawfik

Austenitic stainless steels have been the focus of considerable research recently because of their high strength, good ductility, excellent corrosion resistance and a reasonable weldability. These properties make austenitic stainless steels attractive candidate materials for use in the fabrication of piping systems, automotive exhaust gas systems and in a variety of equipment associated with the chemical and nuclear power industries. PWHT is a stress relieving process whereby residual stresses are reduced by typically heating to 550–650 °C for a set time depending upon plate thickness. The effect of PWHT on mechanical properties such as hardness, ultimate tensile strength, yield strength, impact energy and ductile to brittle transition temperature are of great concern to the pressure vessel industry and pressure vessel codes. This paper reports on the effect of multiple PWHT on hardness and microstructure of austenitic stainless steels. The 6 mm AISI 304L, 316L, and 347 austenitic stainless steels were used for this work. This welds were produced by SMAW and GTAW techniques using a single vee preparation and multiple weld beads, and welded by various types of consumables. Selection of a suitable consumables metals for joining those weldment sample joints are an important criterion in view of the differences in physical, chemical, and mechanical properties of the base materials involved.


Author(s):  
Sylvain Pillot ◽  
Carole Baudin ◽  
Stéphanie Corre ◽  
Deborah Heritier ◽  
Cédric Chauvy ◽  
...  

Ensuring mechanical properties of carbon and low alloy steels after deformation is of major concern since the building process of heavy (i.e. thick-walled) pressure vessels may be directly impacted. Indeed, thick plates encounter forming and welding operations that may modify as-delivered properties. From both technical and economical points of view, cold forming is usually preferred. This technique is nowadays widespread and new rolling equipments display sufficient power to handle plates up to at least 250mm thick. Current limitations are now mainly related to maximum admissible strain in materials and regulation rules resulting from construction codes. The ASME Boilers and Pressure Vessels Construction Code on the American side and the EN 13445 Unfired Pressure Vessels Construction Code on the European side, both allow the use of as-strained material up to maximum 5% plastic (i.e. permanent) strain without any subsequent heat treatment operation. Above 5% plastic deformation, on one hand the European code requires a full quality treatment (meaning high temperature austenitization treatment, then cooling in air (normalizing – N) or in accelerated conditions (quenching – Q or accelerated cooling – NAC), followed by a Tempering treatment T) and on the other hand the ASME code only requires Tempering that can even be carried out using the mandatory Post Weld Heat Treatment (PWHT) needed by welded zones. However, it is of high importance to note that thick vessels are always submitted to a final PWHT to insure sufficient toughness in welded zones. This final PWHT is performed whatever the deformation obtained during plate rolling. In practice, there are no thick vessels made out of plates in as-strained conditions. Avoiding a full quality treatment as demanded per EN 13445 rules is of major interest for fabricators as it allows to decrease the delivery time, the risk of appearance of problematic issues (uncontrolled deformations of the vessel during high temperature treatments…) and significantly reduces the overall fabrication costs. This paper focuses on the effect of strain on conventional mechanical properties for steel grades widely used for the fabrication of heavy pressure equipments (i.e. tensile properties, hardness, Charpy V toughness) for different strain levels. In particular, it points out and discusses PWHT effects on properties of various pre-strained materials, showing that there is no need for full quality heat treatment.


2019 ◽  
Vol 6 ◽  
pp. 28
Author(s):  
Marcin Małek ◽  
Marcin Wachowski ◽  
Robert Kosturek

Surface protection by the application of explosive welding is one of the meaningful methods used in many chemical devices like reactor condensers, heat exchangers, steam turbines and other processing apparatus. Due to the wide range of explosively welded applications, the problem of the useful lifetime of the products obtained by this method becomes important and should be well understood. Process of explosive welding is related to enormous pressure and high detonation velocity, which causes intense energy release in a short time, which favors to produce solid wavy bond featured with high metallurgical quality. Due to strain hardening in the bond zone, significant changes in microstructures and mechanical properties were observed. In this paper, 316L stainless steel explosively welded with commercially pure titanium was investigated to show the correlations and changes between microstructures and mechanical properties before and after annealing. Application of post-weld heat treatment contributes to stress relieving and improves the mechanical properties, which is closely related to microstructure recrystallization and hardness decrease adjacent to joint.


Author(s):  
Yuri Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


Sign in / Sign up

Export Citation Format

Share Document