Does Conjugation of Silver Nanoparticles with Thiosemicarbazide Increase Their Antibacterial Properties?

Author(s):  
Tayebeh Honarmand ◽  
Ardalan Panahi Sharif ◽  
Ali Salehzadeh ◽  
Amir Jalali ◽  
Iraj Nikokar
2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Abdallah S. Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Anan Safwat ◽  
Amera Taha ◽  
...  

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4041
Author(s):  
Adriana Cecilia Csakvari ◽  
Cristian Moisa ◽  
Dana G. Radu ◽  
Leonard M. Olariu ◽  
Andreea I. Lupitu ◽  
...  

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


2016 ◽  
Vol 42 (2) ◽  
pp. 2271-2280 ◽  
Author(s):  
Flávio Augusto Cavadas Andrade ◽  
Luci Cristina de Oliveira Vercik ◽  
Fernando Jorge Monteiro ◽  
Eliana Cristina da Silva Rigo

2009 ◽  
Vol 155 (1-2) ◽  
pp. 499-507 ◽  
Author(s):  
N.M. Huang ◽  
S. Radiman ◽  
H.N. Lim ◽  
P.S. Khiew ◽  
W.S. Chiu ◽  
...  

Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Pamela Nair Silva-Holguín ◽  
Simón Yobanny Reyes-López

Researchers are currently looking for materials that are stable, functional, aesthetic, and biocompatible without infections. Therefore, there is a great interest in obtaining a material that has a balance between aesthetic, biological, mechanical, and functional factors, which can be used as an infection control material. The addition of hydroxyapatite to alumina make highly bioactive scaffolds with mechanical strength. Biomedical applications require antibacterial properties; therefore, this idea leads to great interest in the development of new synthetic routes of ceramic biomaterials that allow the release of nanoparticles or metal ions. This investigation presents the obtention of alumina-hydroxyapatite spheres doped with silver nanoparticles with antibacterial effect against various Gram-positive and negative bacteria related to drug-resistance infections. The microstructural and spectroscopic studies demonstrate that the spheres exhibit a homogeneous structure and crystal hydroxyapatite and silver nanoparticles are observed on the surface. The antimicrobial susceptibility was verified with the agar diffusion and turbidimetry methods in Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive ( Staphylococcus aureus and Bacillus subtilis) bacteria. All bacteria used were susceptible to the alumina-hydroxyapatite-silver spheres even at lower silver concentration. The composites have a higher possibility for medical applications focused on the control of drug-resistance microorganisms.


2021 ◽  
Vol 892 ◽  
pp. 36-42
Author(s):  
Muhammad Iqbal Hidayat ◽  
Muhammad Adlim ◽  
Ilham Maulana ◽  
Muhammad Zulfajri

Silver nanoparticles (Ag0) have attracted the most attention due to their broad antimicrobial application and outstanding activity. The silver nanoparticles are usually in colloidal form, then immobilization the colloid onto solid support is still interesting to explore. In this work, a new method for silver colloidal nanoparticle immobilization on silica gel beads (SiG), which was then symbolized as Ag0-[chi-SiG] was conducted and characterized successfully. The finding proved that SiG must be coated with three chitosan film layers to give stable support for silver nanoparticles. This coating method caused the chitosan completely covered SiG, and the chitosan film provides coordination bonding for silver ions. The most appropriate solvent for silver ion impregnation on the surface of chi-SiG is methanol compared to other solvents. Tungsten lamp as the photo-irradiation, which is low cost and environmentally friendly has been proven effective for silver ion reduction, as shown by silver metal colloid UV-Vis surface plasmon resonance at 400-700 nm. Ag0-[chi-SiG] showed the antibacterial properties of inhibiting the growth Staphylococcus aureus and Escherichia coli; then it provides the potential application for antibacterial filter material. According to the weight comparison between antibacterial standard and Ag content, then Ag0-[chi-SiG] has two and five times higher of exhibiting zone for each bacteria.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 652 ◽  
Author(s):  
Wang Lee ◽  
Eungwang Kim ◽  
Hyun-Ju Cho ◽  
Taejoon Kang ◽  
Bongsoo Kim ◽  
...  

A silver nanoparticle is one of the representative engineered nanomaterials with excellent optical, electrical, antibacterial properties. Silver nanoparticles are being increasingly used for medical products, water filters, and cosmetics, etc. However, silver nanoparticles are known to cause adverse effects on the ecosystem and human health. To utilize silver nanoparticles with minimized negative effects, it is important to understand the behavior of silver nanoparticles released to the environment. In this study, we compared toxicity behaviors of citrate-stabilized silver nanoparticles with polyethylene glycol coated silver nanoparticles in two different ionic environments, which are aquatic environments for developing zebrafish embryo. Depending on the composition of the ionic environment, citrate-stabilized silver nanoparticles and polyethylene glycol coated silver nanoparticles exhibited different behaviors in dissolution, aggregation, or precipitation, which governed the toxicity of silver nanoparticles on zebrafish embryos.


Sign in / Sign up

Export Citation Format

Share Document