scholarly journals Drosophila PLUTONIUM protein is a specialized cell cycle regulator required at the onset of embryogenesis.

1997 ◽  
Vol 8 (4) ◽  
pp. 583-593 ◽  
Author(s):  
L K Elfring ◽  
J M Axton ◽  
D D Fenger ◽  
A W Page ◽  
J L Carminati ◽  
...  

Unfertilized eggs and fertilized embryos from Drosophila mothers mutant for the plutonium (plu) gene contain giant polyploid nuclei resulting from unregulated S-phase. The PLU protein, a 19-kDa ankyrin repeat protein, is present in oocytes and early embryos but is not detectable after the completion of the initial rapid S-M cycles of the embryo. The persistence of the protein during the early embryonic divisions is consistent with a direct role in linking S-phase and M-phase. When ectopically expressed in the eye disc, PLU did not perturb the cell cycle, suggesting that PLU regulates S-phase only in early embryonic development. The pan gu (png) and giant nuclei (gnu) genes also affect the S-phase in the unfertilized egg and early embryo. We show that functional png is needed for the presence of PLU protein. By analyzing png mutations of differing severity, we find that the extent of the png mutant phenotype inversely reflects the level of PLU protein. Our data suggest that PLU protein is required at the time of egg activation and the completion of meiosis.

2000 ◽  
Vol 74 (19) ◽  
pp. 9152-9166 ◽  
Author(s):  
Grace Y. Lin ◽  
Robert A. Lamb

ABSTRACT Infection of cells by many viruses affects the cell division cycle of the host cell to favor viral replication. We examined the ability of the paramyxovirus simian parainfluenza virus 5 (SV5) to affect cell cycle progression, and we found that SV5 slows the rate of proliferation of HeLa T4 cells. The SV5-infected cells had a delayed transition from G1 to S phase and prolonged progression through S phase, and some of the infected cells were arrested in G2 or M phase. The levels of p53 and p21CIP1were not increased in SV5-infected cells compared to mock-infected cells, suggesting that the changes in the cell cycle occur through a p53-independent mechanism. However, the phosphorylation of the retinoblastoma protein (pRB) was delayed and prolonged in SV5-infected cells. The changes in the cell cycle were also observed in cells expressing the SV5 V protein but not in the cells expressing the SV5 P protein or the V protein lacking its unique C terminus (VΔC). The unique C terminus of the V protein of SV5 was shown previously to interact with DDB1, which is the 127-kDa subunit of the multifunctional damage-specific DNA-binding protein (DDB) heterodimer. The coexpression of DDB1 with V can partially restore the changes in the cell cycle caused by expression of the V protein.


2000 ◽  
Vol 20 (8) ◽  
pp. 2794-2802 ◽  
Author(s):  
Neptune Mizrahi ◽  
Claire Moore

ABSTRACT The poly(A) polymerase of the budding yeast Saccharomyces cerevisiae (Pap1) is a 64-kDa protein essential for the maturation of mRNA. We have found that a modified Pap1 of 90 kDa transiently appears in cells after release from α-factor-induced G1 arrest or from a hydroxyurea-induced S-phase arrest. While a small amount of modification occurs in hydroxyurea-arrested cells, fluorescence-activated cell sorting analysis and microscopic examination of bud formation indicate that the majority of modified enzyme is found at late S/G2 and disappears by the time cells have reached M phase. The reduction of the 90-kDa product upon phosphatase treatment indicates that the altered mobility is due to phosphorylation. A preparation containing primarily the phosphorylated Pap1 has no poly(A) addition activity, but this activity is restored by phosphatase treatment. A portion of Pap1 is also polyubiquitinated concurrent with phosphorylation. However, the bulk of the 64-kDa Pap1 is a stable protein with a half-life of 14 h. The timing, nature, and extent of Pap1 modification in comparison to the mitotic phosphorylation of mammalian poly(A) polymerase suggest an intriguing difference in the cell cycle regulation of this enzyme in yeast and mammalian systems.


2020 ◽  
Author(s):  
Gee In Jung ◽  
Kunsoo Rhee

ABSTRACTCancer cells frequently include supernumerary centrioles. Here, we generated TP53;PCNT;CEP215 triple knockout cell lines and observed precocious separation and amplification of the centrioles at M phase. Many of the triple KO cells maintained supernumerary centrioles throughout the cell cycle. The M-phase-assembled centrioles lack an ability to function as templates for centriole assembly during S phase. They also lack an ability to organize microtubules in interphase. However, we found that a fraction of them acquired an ability to organize microtubules during M phase. Our works provide an example how supernumerary centrioles behave in dividing cells.


1992 ◽  
Vol 101 (1) ◽  
pp. 55-67 ◽  
Author(s):  
N. Grandin ◽  
M. Charbonneau

In Xenopus eggs, the transient increase in intracellular free calcium ([Ca2+]i), or Ca2+ transient, which occurs 1–3 min after egg activation, is likely to be partly responsible for the release of the cell cycle blockade. In the present study, we have used microinjection of BAPTA or EGTA, two potent chelators of Ca2+, to buffer [Ca2+]i at various steps during Xenopus egg activation and evaluate the impact on some of the associated events. Microinjection of either one of the Ca2+ chelators into unactivated eggs prevented egg activation without, however, lowering [Ca2+]i, suggesting that only physiological [Ca2+]i changes, but not [Ca2+]i levels, were affected by the Ca2+ buffer. When BAPTA was microinjected around the time of occurrence of the Ca2+ transient, the egg activation-associated increase in intracellular pH (pHi) was clearly delayed. That delay was not due to a general slowing down of the cell cycle, since under the same conditions of microinjection of BAPTA the kinetics of MPF (a universal M-phase promoting factor) inactivation were unaffected. These results represent the first indication that the Ca2+ transient participates in determining the time of initiation of the pHi increase during Xenopus egg activation. The present results also demonstrate that the egg activation-associated pHi changes (a slight, transient decrease in pHi followed by a permanent increase in pHi) proceed as a wave propagating from the site of triggering of egg activation. Experiments of local microinjection of BAPTA support the view that the pH wave is a consequence of the Ca2+ wave, which it follows closely.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroaki Shimono ◽  
Atsushi Kaida ◽  
Hisao Homma ◽  
Hitomi Nojima ◽  
Yusuke Onozato ◽  
...  

AbstractIn this study, we examined the fluctuation in radioresponse of HeLa cells during the cell cycle. For this purpose, we used HeLa cells expressing two types of fluorescent ubiquitination-based cell cycle indicators (Fucci), HeLa-Fucci (CA)2 and HeLa-Fucci (SA), and combined this approach with the micronucleus (MN) assay to assess radioresponse. The Fucci system distinguishes cell cycle phases based on the colour of fluorescence and cell morphology under live conditions. Time-lapse imaging allowed us to further identify sub-positions within the G1 and S phases at the time of irradiation by two independent means, and to quantitate the number of MNs by following each cell through M phase until the next G1 phase. Notably, we found that radioresponse was low in late G1 phase, but rapidly increased in early S phase. It then decreased until late S phase and increased in G2 phase. For the first time, we demonstrated the unique fluctuation of radioresponse by the MN assay during the cell cycle in HeLa cells. We discuss the difference between previous clonogenic experiments using M phase-synchronised cell populations and ours, as well as the clinical implications of the present findings.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 349-349
Author(s):  
Lina Li ◽  
Cynthia A. Presley ◽  
Bryan Kastl ◽  
Jose A. Cancelas

Abstract Contact between bone marrow (BM) hematopoietic stem cells (HSC) and osteoblast/stromal (OS) cells has been shown to be critical in the regulation of hematopoiesis. However, very little is known about the regulatory mechanisms of direct cell-to-cell communication in the hematopoietic microenvironment. BM cells are directly connected through gap junctions (GJs) which consist of narrow channels between contacting cells and are composed by connexins. Connexin 43 (Cx43) is expressed by BM OS cells. Multiple osteogenic defects have been reported in human Cx43 mutations and Cx43 has been shown to be essential in controlling osteoblast functions. Due to the perinatal death of Cx43 germline null mice, an interferon-inducible, conditional genetic approach (Mx1-Cre), expressed by both hematopoietic and stromal BM cells, was used to study the role of Cx43 in stem cell function. We have previously reported that Cx43 is critical for the interaction between stroma and HSC in CAFC assays (Cancelas J.A. et al., Blood 2000) and in adult hematopoiesis after 5-fluorouracil (5-FU) administration (Presley C, et al., Cell Comm. Adh., 2005). Here, we observed that after 5-FU administration, Cx43 expression is predominantly located in the endosteum. To study the role of stroma-dependent Cx43 in hematopoiesis, we developed hematopoietic chimeras by BM transplantation of wild-type Cx43 HSC into stromal Cx43-deficient mice. Stromal Cx43 deficiency induced a severe impairment of blood cell formation during the recovery phase after 5-FU administration compared to stromal Mx1-Cre-Tg wild-type controls (Table 1), as well as a significant decrease in BM cellularity (~60% reduction) and progenitor cell content (~83% reduction). Cell cycle analysis of 5-FU-treated BM progenitors from stromal Cx43-deficient mice showed an S-phase arrest (S phase: 63.5%; G2/M phase: <1%) compared to wild-type chimeric mice (S phase: 38.6%, G2/M phase: 7.8%, p=0.01) suggesting a cell division blockade. Unlike Cx43-deficient primary mice, a differentiation arrest at the HSC compartment was observed in 5-FU-treated, stromal Cx43-deficient mice, since the content of competitive repopulating units (CRU) at 1 month, of 14-day post-5-FU BM of stromal Cx43-deficient mice was increased (27.7 ± 0.67) compared to recipients of HSC from stromal wild-type counterparts (26.5 ± 0.92 CRU, p < 0.01). Interestingly, wild-type hematopoietic progenitor homing in stromal Cx43-deficient BM was severely impaired with respect to wild-type BM (5.1% vs10.4 %, respectively, p < 0.01), while hematopoietic Cx43-deficient BM progenitors normally homed into the BM, suggesting a differential role for Cx43 in stromal and HSC. In conclusion, expression of Cx43 in osteoblasts and stromal cells appears to play a crucial role in the regulation of HSC homing in BM and hematopoietic regeneration after chemotherapy. Peripheral blood counts of WT and stromal Cx43-deficient chimeric mice after 5-FU administration (150 mg/Kg) Neutrophil counts (×10e9/L) Reticulocyte count (%) Day post-5-FU WT Cx43-deficient WT Cx43-deficient * p < 0.05 Day +8 2.89 ± 0.06 0.81 ± 0.02* 2.0 ± 0.6 3.0 ± 0.9 Day +11 9.11 ± 2.5 3.13 ± 0.8* 6.1 ± 0.6 2.7 ± 0.3* Day +14 6.22 ± 5.7 7.58 ± 8.2 7.5 ± 0.5 2.5 ± 0.5*


Zygote ◽  
1996 ◽  
Vol 4 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Martin Wilding

Over the past few years, we have witnessed a burgeoning series of papers addressing the role of calcium signalling in cell cycle control. In this review I will attempt to bring together all the diverse threads and discuss new concepts that have arisen from the most recent data. Because the major part of the data concerns mitosis/meiosis entry and exit, I have focused on these areas. I will jointly refer to meiotic and mitotic phases of the cell cycle as M-phase because these phases are highly comparable. Studies of the cell cycle involve a huge range of species, from plants to humans. I will, however, restrict this review to the work performed in early embryos. I apologise in advance to contributors to this field whose names I do not mention because they do not work on embryos.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Tao Yang ◽  
Gen-Hua Li ◽  
Zheng-You Li ◽  
Song Feng ◽  
Xue-Qin Liu ◽  
...  

Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells.Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBαprotein in cytoplasm and NF-κB/p65 in nucleus.Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P<0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P<0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P<0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBαexpression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P<0.05).Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell cycle and NF-κB signaling pathway; however, the real antitumor mechanism of corilagin is not yet clear and requires further study.


2012 ◽  
Vol 287 (15) ◽  
pp. 11891-11898 ◽  
Author(s):  
Kyung Yong Lee ◽  
Sung Woong Bang ◽  
Sang Wook Yoon ◽  
Seung-Hoon Lee ◽  
Jong-Bok Yoon ◽  
...  

During the late M to the G1 phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2–5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2–5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.


2001 ◽  
Vol 21 (10) ◽  
pp. 3445-3450 ◽  
Author(s):  
Bo Xu ◽  
Seong-tae Kim ◽  
Michael B. Kastan

ABSTRACT Cell cycle arrests in the G1, S, and G2phases occur in mammalian cells after ionizing irradiation and appear to protect cells from permanent genetic damage and transformation. Though Brca1 clearly participates in cellular responses to ionizing radiation (IR), conflicting conclusions have been drawn about whether Brca1 plays a direct role in cell cycle checkpoints. Normal Nbs1 function is required for the IR-induced S-phase checkpoint, but whether Nbs1 has a definitive role in the G2/M checkpoint has not been established. Here we show that Atm and Brca1 are required for both the S-phase and G2 arrests induced by ionizing irradiation while Nbs1 is required only for the S-phase arrest. We also found that mutation of serine 1423 in Brca1, a target for phosphorylation by Atm, abolished the ability of Brca1 to mediate the G2/M checkpoint but did not affect its S-phase function. These results clarify the checkpoint roles for each of these three gene products, demonstrate that control of cell cycle arrests must now be included among the important functions of Brca1 in cellular responses to DNA damage, and suggest that Atm phosphorylation of Brca1 is required for the G2/M checkpoint.


Sign in / Sign up

Export Citation Format

Share Document