scholarly journals Fer1l6 is essential for the development of vertebrate muscle tissue in zebrafish

2019 ◽  
Vol 30 (3) ◽  
pp. 293-301 ◽  
Author(s):  
Josephine A. Bonventre ◽  
Chelsea Holman ◽  
Aayushi Manchanda ◽  
Sara J. Codding ◽  
Trisha Chau ◽  
...  

The precise spatial and temporal expression of genes is essential for proper organismal development. Despite their importance, however, many developmental genes have yet to be identified. We have determined that Fer1l6, a member of the ferlin family of genes, is a novel factor in zebrafish development. We find that Fer1l6 is expressed broadly in the trunk and head of zebrafish larvae and is more restricted to gills and female gonads in adult zebrafish. Using both genetic mutant and morpholino knockdown models, we found that loss of Fer1l6 led to deformation of striated muscle tissues, delayed development of the heart, and high morbidity. Further, expression of genes associated with muscle cell proliferation and differentiation were affected. Fer1l6 was also detected in the C2C12 cell line, and unlike other ferlin homologues, we found Fer1l6 expression was independent of the myoblast-to-myotube transition. Finally, analysis of cell and recombinant protein–based assays indicate that Fer1l6 colocalizes with syntaxin 4 and vinculin, and that the putative C2 domains interact with lipid membranes. We conclude that Fer1l6 has diverged from other vertebrate ferlins to play an essential role in zebrafish skeletal and cardiac muscle development.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anupam Bhattacharya ◽  
Simang Champramary ◽  
Tanya Tripathi ◽  
Debajit Thakur ◽  
Ilya Ioshikhes ◽  
...  

Abstract Background Our understanding of genome regulation is ever-evolving with the continuous discovery of new modes of gene regulation, and transcriptomic studies of mammalian genomes have revealed the presence of a considerable population of non-coding RNA molecules among the transcripts expressed. One such non-coding RNA molecule is long non-coding RNA (lncRNA). However, the function of lncRNAs in gene regulation is not well understood; moreover, finding conserved lncRNA across species is a challenging task. Therefore, we propose a novel approach to identify conserved lncRNAs and functionally annotate these molecules. Results In this study, we exploited existing myogenic transcriptome data and identified conserved lncRNAs in mice and humans. We identified the lncRNAs expressing differentially between the early and later stages of muscle development. Differential expression of these lncRNAs was confirmed experimentally in cultured mouse muscle C2C12 cells. We utilized the three-dimensional architecture of the genome and identified topologically associated domains for these lncRNAs. Additionally, we correlated the expression of genes in domains for functional annotation of these trans-lncRNAs in myogenesis. Using this approach, we identified conserved lncRNAs in myogenesis and functionally annotated them. Conclusions With this novel approach, we identified the conserved lncRNAs in myogenesis in humans and mice and functionally annotated them. The method identified a large number of lncRNAs are involved in myogenesis. Further studies are required to investigate the reason for the conservation of the lncRNAs in human and mouse while their sequences are dissimilar. Our approach can be used to identify novel lncRNAs conserved in different species and functionally annotated them.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1443
Author(s):  
Susana A. Teixeira ◽  
Daniele B. D. Marques ◽  
Thaís C. Costa ◽  
Haniel C. Oliveira ◽  
Karine A. Costa ◽  
...  

Since pre- and postnatal development are programmed during early prenatal life, studies addressing the complete transcriptional landscape during organogenesis are needed. Therefore, we aimed to disentangle differentially expressed (DE) genes between fetuses (at 35 days old) and embryos (at 25 days old) through RNA-sequencing analysis using the pig as model. In total, 1705 genes were DE, including the top DE IBSP, COL6A6, HBE1, HBZ, HBB, and NEUROD6 genes, which are associated with developmental transition from embryos to fetuses, such as ossification, skeletal muscle development, extracellular matrix organization, cardiovascular system, erythrocyte differentiation, and neuronal system. In pathway analysis, embryonic development highlighted those mainly related to morphogenic signaling and cell interactions, which are crucial for transcriptional control during the establishment of the main organs in early prenatal development, while pathways related to myogenesis, neuronal development, and cardiac and striated muscle contraction were enriched for fetal development, according to the greater complexity of organs and body structures at this developmental stage. Our findings provide an exploratory and informative transcriptional landscape of pig organogenesis, which might contribute to further studies addressing specific developmental events in pigs and in other mammals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osvaldo Contreras ◽  
Fabio M. V. Rossi ◽  
Marine Theret

AbstractStriated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism—all the functions needed for an individual’s health and well-being. The muscle connective tissue’s main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2179-2189 ◽  
Author(s):  
M. Krause ◽  
M. Park ◽  
J.M. Zhang ◽  
J. Yuan ◽  
B. Harfe ◽  
...  

The E proteins of mammals, and the related Daughterless (DA) protein of Drosophila, are ubiquitously expressed helix-loop-helix (HLH) transcription factors that play a role in many developmental processes. We report here the characterization of a related C. elegans protein, CeE/DA, which has a dynamic and restricted distribution during development. CeE/DA is present embryonically in neuronal precursors, some of which are marked by promoter activity of a newly described Achaete-scute-like gene hlh-3. In contrast, we have been unable to detect CeE/DA in CeMyoD-positive striated muscle cells. In vitro gel mobility shift analysis detects dimerization of CeE/DA with HLH-3 while efficient interaction of CeE/DA with CeMyoD is not seen. These studies suggest multiple roles for CeE/DA in C. elegans development and provide evidence that both common and alternative strategies have evolved for the use of related HLH proteins in controlling cell fates in different species.


Development ◽  
2000 ◽  
Vol 127 (10) ◽  
pp. 2041-2051 ◽  
Author(s):  
A.K. Corsi ◽  
S.A. Kostas ◽  
A. Fire ◽  
M. Krause

The basic helix-loop-helix (bHLH) transcription factor Twist plays a role in mesodermal development in both invertebrates and vertebrates. In an effort to understand the role of the unique Caenorhabditis elegans Twist homolog, hlh-8, we analyzed mesodermal development in animals with a deletion in the hlh-8 locus. This deletion was predicted to represent a null allele because the HLH domain is missing and the reading frame for the protein is disrupted. Animals lacking CeTwist function were constipated and egg-laying defective. Both of these defects were rescued in transgenic mutant animals expressing wild-type hlh-8. Observing a series of mesoderm-specific markers allowed us to characterize the loss of hlh-8 function more thoroughly. Our results demonstrate that CeTwist performs an essential role in the proper development of a subset of mesodermal tissues in C. elegans. We found that CeTwist was required for the formation of three out of the four non-striated enteric muscles born in the embryo. In contrast, CeTwist was not required for the formation of the embryonically derived striated muscles. Most of the post-embryonic mesoderm develops from a single lineage. CeTwist was necessary for appropriate patterning in this lineage and was required for expression of two downstream target genes, but was not required for the expression of myosin, a marker of differentiation. Our results suggest that mesodermal patterning by Twist is an evolutionarily conserved function.


2020 ◽  
Vol 117 (22) ◽  
pp. 11865-11874 ◽  
Author(s):  
Raúl Padrón ◽  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Natalia Koubassova ◽  
Kyoung Hwan Lee ◽  
...  

Striated muscle contraction involves sliding of actin thin filaments along myosin thick filaments, controlled by calcium through thin filament activation. In relaxed muscle, the two heads of myosin interact with each other on the filament surface to form the interacting-heads motif (IHM). A key question is how both heads are released from the surface to approach actin and produce force. We used time-resolved synchrotron X-ray diffraction to study tarantula muscle before and after tetani. The patterns showed that the IHM is present in live relaxed muscle. Tetanic contraction produced only a very small backbone elongation, implying that mechanosensing—proposed in vertebrate muscle—is not of primary importance in tarantula. Rather, thick filament activation results from increases in myosin phosphorylation that release a fraction of heads to produce force, with the remainder staying in the ordered IHM configuration. After the tetanus, the released heads slowly recover toward the resting, helically ordered state. During this time the released heads remain close to actin and can quickly rebind, enhancing the force produced by posttetanic twitches, structurally explaining posttetanic potentiation. Taken together, these results suggest that, in addition to stretch activation in insects, two other mechanisms for thick filament activation have evolved to disrupt the interactions that establish the relaxed helices of IHMs: one in invertebrates, by either regulatory light-chain phosphorylation (as in arthropods) or Ca2+-binding (in mollusks, lacking phosphorylation), and another in vertebrates, by mechanosensing.


2000 ◽  
Vol 6 (S2) ◽  
pp. 962-963
Author(s):  
C. DiLullo ◽  
J. Malsbury ◽  
P. M. Mattioli

In nascent cultured primary chick skeletal myocytes, a l integrin is observed to have a punctate distribution. As early as day 3 in culture, however, it can be found to reorganize into periodic doublet bands. Subsequent to a l integrin reorganization, collagen type III has been found to colocalize with these periodic α l integrin bands. The coordinated appearance of these two proteins is suggestive of a possible regulatory role for one or both proteins in muscle development.To ascertain whether this same αl integrin/collagen type III reorganization occurs in muscle cell lines, differentiating myocytes from the C2C12 cell line were examined for the temporal appearance and localization of both proteins. Cultured C2C12 cells were immunofluorescently labeled with antibodies to al integrin, collagen type III and other muscle specific proteins on days 1, 3, 6, 9 and 11 after growth medium was replaced with differentiation medium.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Lili Lin ◽  
Xiaomin Chen ◽  
Ammarah Shabbir ◽  
Si Chen ◽  
Xuewen Chen ◽  
...  

Abstract Membrane remodeling modulates many biological processes. The binding of peripheral proteins to lipid membranes results in membrane invaginations and protrusions, which regulate essential intra-cellular membrane and extra-cellular trafficking events. Proteins that bind and re-shape bio-membranes have been identified and extensively investigated. The Bin/Amphiphysin/Rvs (BAR) domain proteins are crescent-shape and play a conserved role in tubulation and sculpturing of cell membranes. We deployed targeted gene replacement technique to functionally characterize two hypothetical proteins (MoBar-A and MoBar-B) containing unitary N-BAR domain in Magnaporthe oryzae. The results obtained from phenotypic examinations showed that MoBAR-A deletion exerted a significant reduction in the growth of the defective ∆Mobar-A strain. Also, MoBAR-A disruption exclusively compromised hyphae-mediated infection. Additionally, the targeted replacement of MoBAR-A suppressed the expression of genes associated with the formation of hyphae tip appressorium-like structure in M. oryzae. Furthermore, single as well as combined deletion of MoBAR-A and MoBAR-B down-regulated the expression of nine different membrane-associated genes. From these results, we inferred that MoBAR-A plays a key and unique role in the pathogenesis of M. oryzae through direct or indirect regulation of the development of appressorium-like structures developed by hyphae tip. Taken together, these results provide unique insights into the direct contribution of the N-BAR domain proteins to morphological, reproduction, and infectious development of M. oryzae.


2019 ◽  
Vol 20 (22) ◽  
pp. 5547 ◽  
Author(s):  
Alexey Churov ◽  
Volha Summerhill ◽  
Andrey Grechko ◽  
Varvara Orekhova ◽  
Alexander Orekhov

Atherosclerosis is a complex multifactorial disease that, despite advances in lifestyle management and drug therapy, remains to be the major cause of high morbidity and mortality rates from cardiovascular diseases (CVDs) in industrialized countries. Therefore, there is a great need in reliable diagnostic/prognostic biomarkers and effective treatment alternatives to reduce its burden. It was established that microRNAs (miRNAs/miRs), a class of non-coding single-stranded RNA molecules, can regulate the expression of genes at the post-transcriptional level and, accordingly, coordinate the cellular protein expression. Thus, they are involved not only in cell-specific physiological functions but also in the cellular and molecular mechanisms of human pathologies, including atherosclerosis. MiRNAs may be significant in the dysregulation that affects endothelial integrity, the function of vascular smooth muscle and inflammatory cells, and cellular cholesterol homeostasis that drives the initiation and growth of an atherosclerotic plaque. Besides, distinct expression patterns of several miRNAs are attributed to atherosclerotic and cardiovascular patients. In this article, the evidence indicating the multiple critical roles of miRNAs and their relevant molecular mechanisms related to atherosclerosis development and progression was reviewed. Moreover, the effects of miRNAs on atherosclerosis enabled to exploit them as novel diagnostic biomarkers and therapeutic targets that may lead to better management of atherosclerosis and CVDs.


Sign in / Sign up

Export Citation Format

Share Document