Adding Biodiversity to Agricultural Landscapes Through Ecology and Biotechnology

Author(s):  
David Still

Agriculture is practiced on 38% of the landmass on Earth, and having replaced natural ecosystems, it is the largest terrestrial biome on Earth. Agricultural biomes are typically focused on annual crops that are produced as a succession of genetically uniform monocultures. Compared to the ecosystems they replaced, agroecosystems provide fewer ecosystem functions and contain much less biodiversity. The large-scale conversion from natural lands to agriculture occurred centuries ago in the Old World (Africa, China, Europe, and India), but in many areas during the latter 20th and early 21st centuries, especially tropical areas with rich biodiversity, agriculture is an emerging industry. Here, displacement of natural ecosystems is also a late 20th-century occurrence, and much of it is ongoing. Regardless of where or when agriculture was established, biodiversity declined and ecosystem services were eroded. Agricultural practices are the second largest contributor to biodiversity loss, due to the loss of habitat, competition for resources, and pesticide use. Most (~96%) of the land used to produce crops is farmed using conventional methods, while smaller percentages are under organic production (~2%) or are producing biotech crops (~4%). Regardless of how agriculture is practiced, it exacts a toll on biodiversity and ecosystem services. While organic agriculture embraces many ecological principals in producing food, it fails to recognize the value of biotechnology as a tool to reduce the environmental impact of agriculture. Herbicide- and/or insect-resistant crops are the most widely planted biotech crops worldwide. Biotech crops in general, but especially insect-resistant crops, reduce pesticide use and increase biodiversity. The widespread adoption of glyphosate-resistant crops increased the use of this herbicide, and resistance evolved in weeds. On the other hand, glyphosate has less environmental impacts than other herbicides. Because of the limited scale of biotech production, it will not have large impacts on mitigating the effects of agriculture on biodiversity and ecosystem services. To have any hope of reducing the environmental impact of agriculture, agro-ecology principals and biotechnology will need to be incorporated. Monetizing biodiversity and ecosystem services through incorporation into commodity prices will incentivize producers to be part of the biodiversity solution. A multi-level biodiversity certification is proposed that is a composite score of the biodiversity and ecosystem services of an individual farm and the growing region were the food is produced. Such a system would add value to the products from farms and ranches proportionate to the level by which their farm and region provides biodiversity and ecosystem services as the natural ecosystem it replaced.

2020 ◽  
Author(s):  
Miriam Muñoz-Rojas ◽  
Paulo Pereira

<p>Fire is an essential element of the environment and a vital force for shaping landscapes all around the world. It has a critical role as driver of natural ecosystem processes and many plant communities are fire dependent aros the globe. However, although fire is a natural and regular component of some biomes in the Earth’s systems, it can become a destructive force when natural ecosystems are disturbed, fire is introduced at a rate not previously experienced, and recovery to a pre-fire state is not possible. Thus, assesing the potentially harmful environmental impacts of fire and building the underlying knowledge required to successfully manage fire makes are crucial in order to understand the role of fire in all its different dimensions. Over the past year, fires in California in the United States and in the Amazon rainforest in Brazil have grabbed the world’s attention. The increased rates of fire events in some of these areas, mostly attributed to land degradation processes, have led to international concern. More recently, several bushfires all around Australia have had dramatic impacts in the environment with 10 million hectares burned so far, including large portions of the natural environment. These unprecedented fires are predicted to affect to a large extent the soil characteristics, processes and function in several ecosystems. In this presentation, we highlight some of the most recent research published during the last year on the effects of fire on soil functions and the provision of soil ecosystem services. We also showcase some of the possible approaches to protect and conserve soil ecosystems affected by extreme fires and propose available strategies for post-fire management.</p>


2020 ◽  
Vol 287 (1935) ◽  
pp. 20201390 ◽  
Author(s):  
Clara Stuligross ◽  
Neal M. Williams

Bees and other beneficial insects experience multiple stressors within agricultural landscapes that act together to impact their health and diminish their ability to deliver the ecosystem services on which human food supplies depend. Disentangling the effects of coupled stressors is a primary challenge for understanding how to promote their populations and ensure robust pollination and other ecosystem services. We used a crossed design to quantify the individual and combined effects of food resource limitation and pesticide exposure on the survival, nesting, and reproduction of the blue orchard bee Osmia lignaria . Nesting females in large flight cages accessed wildflowers at high or low densities, treated with or without the common insecticide, imidacloprid. Pesticides and resource limitation acted additively to dramatically reduce reproduction in free-flying bees. Our results emphasize the importance of considering multiple drivers to inform population persistence, management, and risk assessment for the long-term sustainability of food production and natural ecosystems.


2016 ◽  
Vol 3 (3) ◽  
pp. 48-53 ◽  
Author(s):  
G. Chobotko ◽  
L. Raychuk ◽  
I. McDonald

The aim of the article was to defi ne the role of the radioactive environment contamination in the formation of ecosystem services strategy. Methods. Monographic, systemic and structural, factor analysis, abstract and logical research methods have been used. The data from the State Statistics Service of Ukraine, the Ministry of Agrarian Policy and Food of Ukraine, the Ministry of Ecology and Natural Resources of Ukraine, materials of scientifi c researches, international materials and reports and other literary sources on the issues investigated have been used as an information base. Results. Retrospective analysis of sources and state of radioactive eco- systems contamination was conducted and the priority steps in developing the concept of ecosystem services in conditions of radiation contamination were found. Conclusions. The current socio-ecological paradigm of the transition from environmental use to environmental management should be refl ected in the relevant envi- ronmental management mechanisms. Currently, when assessing the state of ecosystem services in Ukraine and worldwide one must take into account the changes in food demand of residents of radioactively contaminated areas, the exploitation of radioactively safe ecosystems growth, their overload and degradation. All of this re- quires an inventory of ecosystem services by type, region, consumers, etc. and the formation of a state register of ecosystem services with a clear assignment of area of responsibility for appropriate natural ecosystems. This will help to make the economic evaluation of different ecosystem services and mechanisms of charges for ecosystem services.


World ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 374-378
Author(s):  
Farshad Amiraslani

Despite the paramount role of drylands in supporting people’s livelihoods and rendering ecosystem services, legislation on Environmental Impact Assessment has been introduced belatedly after several decades. By exemplifying Iran, the author proposes two main reasons for such a delayed action. First, drylands are misleadingly considered as barren lands where biodiversity is relatively low. In one classification, deserts are even categorized along with rocks. Second, the author emphasizes that drylands have been subjected to unprecedented changes due to the expansion of infrastructure and urbanization that started in the 1970s. These growing pressures have been beyond the ecological resilience of drylands and have not been monitored, assessed, and modified correctly. Further scrutiny regarding EIA undertakings in drylands and the way they can be improved is now needed.


2004 ◽  
Vol 49 (3) ◽  
pp. 125-134 ◽  
Author(s):  
R.H. Jongbloed ◽  
J.H.J. Hulskotte ◽  
C. Kempenaar

By means of a modelling tool an analysis was made of the local variation in the use of pesticides in the province of Utrecht in The Netherlands, and the potential environmental impact of pesticide emissions on the aquatic ecosystems. The aim of this study was to identify and quantify the major sources of pesticide use and environmental impact, taking the regional variation of pesticide use into account. The analysis was targeted at different levels: detailed (individual active substances, individual agricultural crops, civil land-use types, hydrological catchment basins) and globally covering agricultural use, non-agricultural use (some civil sectors) and recreational shipping. The results can be used for the (re)design of environmental monitoring programmes of pesticides in surface waters and for the development of region based policies towards sustainable pesticide use. The analysis tool that was developed is considered to be applicable for other regions as well.


2014 ◽  
Vol 369 (1639) ◽  
pp. 20120286 ◽  
Author(s):  
Ferdinando Villa ◽  
Brian Voigt ◽  
Jon D. Erickson

As societal demand for food, water and other life-sustaining resources grows, the science of ecosystem services (ES) is seen as a promising tool to improve our understanding, and ultimately the management, of increasingly uncertain supplies of critical goods provided or supported by natural ecosystems. This promise, however, is tempered by a relatively primitive understanding of the complex systems supporting ES, which as a result are often quantified as static resources rather than as the dynamic expression of human–natural systems. This article attempts to pinpoint the minimum level of detail that ES science needs to achieve in order to usefully inform the debate on environmental securities, and discusses both the state of the art and recent methodological developments in ES in this light. We briefly review the field of ES accounting methods and list some desiderata that we deem necessary, reachable and relevant to address environmental securities through an improved science of ES. We then discuss a methodological innovation that, while only addressing these needs partially, can improve our understanding of ES dynamics in data-scarce situations. The methodology is illustrated and discussed through an application related to water security in the semi-arid landscape of the Great Ruaha river of Tanzania.


Author(s):  
Javiera Barandiarán

Neoliberal environmental policies operate through markets, including for carbon, water, ecosystem services, or—as in contemporary Chile—for environmental scientific knowledge. Chile illustrates how markets for science operate, such as for monitoring data or environmental impact assessments, and their negative impacts on public trust in science and on the state’s regulatory efforts. In a society governed by a market for science, environmental scientists cannot escape the suspicion that conflicts of interest compromise their independence and the credibility of their work. Chile’s neoliberal 1980 Constitution sustains this market for knowledge but will be reformed following national demonstrations in 2019. The health of Chile’s environment depends on a new constitution that democratizes both democracy and science. Rights of nature doctrines, as in Ecuador’s 2008 Constitution, can provide the constitutional foundation for strong mutual accountability between science, the state, society, and nature.


2018 ◽  
Vol 100 (4) ◽  
pp. 745-766
Author(s):  
Lillian C. Woo

In the last fifty years, empirical evidence has shown that climate change and environmental degradation are largely the results of increased world population, economic development, and changes in cultural and social norms. Thus far we have been unable to slow or reverse the practices that continue to produce more air and water pollution, soil and ocean degradation, and ecosystem decline. This paper analyzes the negative anthropogenic impact on the ecosystem and proposes a new design solution: ecomimesis, which uses the natural ecosystem as its template to conserve, restore, and improve existing ecosystems. Through its nonintrusive strategies and designs, and its goal of preserving natural ecosystems and the earth, ecomimesis can become an integral part of stabilizing and rehabilitating our natural world at the same time that it addresses the needs of growing economies and populations around the world.


2018 ◽  
Vol 56 (4) ◽  
pp. 802-811 ◽  
Author(s):  
Ulrika Samnegård ◽  
Georgina Alins ◽  
Virginie Boreux ◽  
Jordi Bosch ◽  
Daniel García ◽  
...  

2016 ◽  
Vol 7 (2) ◽  
pp. 185-190
Author(s):  
A. Bernués

Pasture-based livestock systems, often located in High Value Nature farmland areas, hold the greatest potential to deliver public goods across European agricultural systems. They play an important role in preserving agricultural landscapes, farmland biodiversity, cultural heritage, and in sustaining rural development. However, many of these functions are ignored in evaluation frameworks because public goods do not have market price and are often ignored in policy design, so farmers do not get the appropriate incentives to provide them. Different conceptual frameworks can be utilized to evaluate the multiple functions or services of these systems: Multifunctional Agriculture, Ecosystem Services, and Total Economic Value. We analyze the common characteristics of these concepts (e.g. they place human benefits and societal demands at the core of their definitions), their specificities (e.g. use of different units of analysis and spatial-temporal scales), and how they can be embedded in the wider concept of sustainability. Finally, we illustrate how the different concepts can be combined to evaluate pasture-based livestock farming systems from a socio-cultural and economic perspective. The public goods (ecosystem services) provided by representative case studies in Mediterranean and Nordic regions are quantified (also in monetary terms) under different environmental/policy scenarios. The results show that there is a clear underestimation of the socio-cultural and economic values of ecosystem services provided by these farming systems. They also show that the social welfare loss linked to further abandonment of livestock farming, and the associated environmental degradation, is very large. From a societal perspective, it is necessary to jointly measure the biophysical, socio-cultural and monetary values of ecosystem services (market and nonmarket) in order to promote the sustainability of pasture-based livestock systems.


Sign in / Sign up

Export Citation Format

Share Document