6. The chemical brothers: why isotopes are useful

Author(s):  
Philip Ball

‘The chemical brothers: why isotopes are useful’ explains the chemistry and application of isotopes. The arrangement of isotopes in the Periodic Table by weight did not always make sense, until Francis Aston discovered the presence of isotopes: chemically identical atoms which differ only in atomic weight due to differing numbers of neutrons. Radioactive isotopes differ in the stability of their nuclei. Measuring the speed of decay allows scientists to date archaeological finds, and even the universe itself. Stable isotopes can be used to give a record of climate change. Isotopes are also commonly used in medical imaging and cancer treatment.

2018 ◽  
Vol 90 (12) ◽  
pp. 1833-2092 ◽  
Author(s):  
Norman E. Holden ◽  
Tyler B. Coplen ◽  
John K. Böhlke ◽  
Lauren V. Tarbox ◽  
Jacqueline Benefield ◽  
...  

AbstractThe IUPAC (International Union of Pure and Applied Chemistry) Periodic Table of the Elements and Isotopes (IPTEI) was created to familiarize students, teachers, and non-professionals with the existence and importance of isotopes of the chemical elements. The IPTEI is modeled on the familiar Periodic Table of the Chemical Elements. The IPTEI is intended to hang on the walls of chemistry laboratories and classrooms. Each cell of the IPTEI provides the chemical name, symbol, atomic number, and standard atomic weight of an element. Color-coded pie charts in each element cell display the stable isotopes and the relatively long-lived radioactive isotopes having characteristic terrestrial isotopic compositions that determine the standard atomic weight of each element. The background color scheme of cells categorizes the 118 elements into four groups: (1) white indicates the element has no standard atomic weight, (2) blue indicates the element has only one isotope that is used to determine its standard atomic weight, which is given as a single value with an uncertainty, (3) yellow indicates the element has two or more isotopes that are used to determine its standard atomic weight, which is given as a single value with an uncertainty, and (4) pink indicates the element has a well-documented variation in its atomic weight, and the standard atomic weight is expressed as an interval. An element-by-element review accompanies the IPTEI and includes a chart of all known stable and radioactive isotopes for each element. Practical applications of isotopic measurements and technologies are included for the following fields: forensic science, geochronology, Earth-system sciences, environmental science, and human health sciences, including medical diagnosis and treatment.


2021 ◽  
Vol 13 (15) ◽  
pp. 8170
Author(s):  
Veronica Sanda Chedea ◽  
Ana-Maria Drăgulinescu  ◽  
Liliana Lucia Tomoiagă  ◽  
Cristina Bălăceanu ◽  
Maria Lucia Iliescu 

Known for its dry and semi-dry white wine, the Târnave vineyard located in central Transylvania is challenged by the current climate change, which has resulted in an increase of the period of active vegetation by approximately 15–20 days, the average annual temperature by 1–1.5 °C and also the amount of useful temperatures (useful thermal balance for the grapevine). Furthermore, the frost periods have been reduced. Transylvania is an important Romanian region for grapevine cultivation. In this context, one can use the climatic changes to expand their wine assortment by cultivating an autochthonous grapevine variety called Amurg. Amurg is a red grape cultivar homologated at SCDVV Blaj, which also homologated 7 cultivars and 11 clones. Because viticulture depends on the stability of meteorological and hydrological parameters of the growing area, its foundations are challenged by climate change. Grapevine production is a long time investment, taking at least five years before the freshly planted vines produce the desired quality berries. We propose the implementation of a climate change-based precision viticulture turn-key solution for environmental monitoring in the Târnave vineyard. This solution aims to evaluate the grapevine’s micro-climate to extend the sustainable cultivation of the Amurg red grapes cultivar in Transylvania with the final goal of obtaining Protected Designation of Origin (PDO) rosé and red wines from this region. Worldwide, the changing conditions from the existing climate (a 30-year average), used in the past hundred years to dictate local standards, such as new and erratic trends of temperature and humidity regimes, late spring freezes, early fall frosts, storms, heatwaves, droughts, area wildfires, and insect infestations, would create dynamic problems for all farmers to thrive. These conditions will make it challenging to predict shifts in each of the components of seasonal weather conditions. Our proposed system also aims to give a solution that can be adapted to other vineyards as well.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0206138 ◽  
Author(s):  
Ceres Barros ◽  
Wilfried Thuiller ◽  
Tamara Münkemüller

2019 ◽  
Vol 26 (1) ◽  
pp. 105
Author(s):  
Susana Borràs

<p>In the new 'Age of the Anthropocene', the Earth's atmosphere, like other elements of Nature, is rapidly being colonized by a minority of the world's population, at no cost, threatening the security of all humanity and the stability of the planet. The development processes of the great emitters of greenhouse gases have transferred social and environmental costs to all the world population, especially the most impoverished ones. This article is a critical analysis of how the legal climate change regime continues to legitimize the onslaught on the atmosphere. It reflects on the need to move to a new "climate justice law", characterized by responsibilities and obligations centered on the prevention, repair, restoration and treatment of damage and related risks linked to climate change, while protecting human rights and the atmosphere, as a common interest of humanity and the Earth.</p><p><strong>Keywords: </strong>Atmosphere, climate change, common concern of humankind, climate justice law<strong></strong></p>


2021 ◽  
Author(s):  
Rochelle Forrester

The change from the traditional Western and Chinese view of the elements involving materials such as water, air, earth, wood, metal and fire, to the chemical elements making up the periodic table, to atoms, to particles such as protons, neutrons and electrons, and then to quarks was inevitable. The order of discovery of these ideas of the ultimate constituents of matter was necessary, in that they could not have been discovered in any other order. This was because nature has a particular structure and we have a particular place in nature. The traditional view of the elements could be obtained by naked eye observation, and the view of nature as being made up of the chemical elements in the periodic table was next discovered, as it involved the decomposition of traditional elements, such as air and water. This led to the idea there was a separate atom for each element which explained the differences between the elements. The sub atomic particles were discovered in a necessary order with the outer particles like the electron being discovered earlier, and inner particles such as quarks being discovered later. The order of discovery of particles was also affected by the properties of the particles. The charges of particles, their mass and ability to survive outside the particles they make up, and other properties will make a particle harder or easier to discover. The order of discovery is inevitable and set by the structure of the universe. The structure of the universe includes the structure of the atom, and of the particles making up the atom, and the properties of the atom, and of the particles making up the atom.


Author(s):  
Peter Mason

Climate change poses a major threat to almost all forms of human activity on earth, including tourism. As Holden (2016: 227) argues: Of all the challenges facing tourism’s relationship with nature, it is not an exaggeration to state that climate change represents the greatest. Holden gives as his rationale for this statement that it is the stability and predictability of climate that is vital for the environments and ecosystems that are required for the continuation of current types of tourism, whether these are the traditional form of mass tourism, in terms of ‘sun, sea and sand’ holidays, or a niche activity which involves visiting a tropical rain forest with rare flora and fauna as the main attraction. Climate change also presents opportunities for tourism. If areas currently experiencing cool winters and mild summers get warmer, then new types of tourism may be possible including beach-based holidays where at present these are of little importance. Climate change is likely to lead to modifications in the weather at different times of the year so ‘seasonality’ which is currently a very important dimension to many forms of tourism will be affected, probably to the extent that seasons when there is high tourism activity will get longer in some parts of the world. Although tourism is likely to be significantly affected by climate change, it has also contributed to climate change through for example the burning of fossil fuels in transport for tourism as well through the use of power in hotel accommodation.


Author(s):  
Eric Scerri

The term “infra-uranium,” meaning before uranium, is one that I have proposed by contrast to the better-known term transuranium elements that are discussed in the following chapter. The present chapter concerns the last seven elements that formed the missing gaps in the old periodic table that ended with the element uranium. After Moseley developed his X-ray method, it became clear that there were just seven elements yet to be isolated among the 92 naturally occurring elements or hydrogen (#1) to uranium (#92). This apparent simplicity is somewhat spoiled by the fact that, as it turned out, some of these seven elements were first isolated from natural sources following their being artificially created, but this raises more issues that are best left to the next chapter of this book. The fact remains that five of these seven elements are radioactive, the two exceptions being hafnium and rhenium, the second and third of them to be isolated. The first of the seven final infra-uranium elements to be discovered was protactinium, and it was one of the lesser-known predictions made by Mendeleev. In his famous 1896 paper, Mendeleev indicated incorrect values for both thorium (118) and uranium (116). (See figure 1.6.) A couple of years later, he corrected both of these values and showed a missing element between thorium and uranium (figure 4.4). In doing so, Mendeleev added the following paragraph, in which he made some specific predictions. . . . Between thorium and uranium in this series we can further expect an element with an atomic weight of about 235. This element should form a highest oxide R2O5, like Nb and Ta to which it should be analogous. Perhaps in the minerals which contain these elements a certain amount of weak acid formed from this metal will also be found.. . . The modern atomic weight for eka-tantalum or protactinium is 229.2. The apparent inaccuracy in Mendeleev’s prediction is not too surprising, however, since he never knew that protactinium is a member of only four “pair reversals” in the entire periodic table.


Author(s):  
Eric Scerri

Having now examined attempts to explain the nature of the elements and the periodic system in a theoretical manner, it is necessary to backtrack a little in order to pick up a number of important issues not yet addressed. As in the preceding chapters, several contributions from fields outside of chemistry are encountered, and the treatment proceeds historically. So far in this book, the elements have been treated as if they have always existed, fully formed. Nothing has yet been said about how the elements have evolved or about the relative abundance of the isotopes of the elements. These questions form the contents of this chapter. It also emerges that different isotopes show different stabilities, a feature that can be explained to a considerable extent by appeal to theories from nuclear physics. The study of nucleosynthesis, and especially the development of this field, is intimately connected to the development of the field of cosmology as a branch of physical science. In a number of instances, different cosmological theories have been judged according to the degree to which they could explain the observed universal abundances of the various elements. Perhaps the most controversial cosmological debate has been over the rival theories of the big bang and the steady-state models of the universe. The proponents of these theories frequently appealed to relative abundance data, and indeed, the eventual capitulation of the steady-state theorists, or at least some of them, was crucially dependent upon the observed ratio of hydrogen to helium in the universe. Chapters 2, 3, and 6 discussed Prout’s hypothesis, according to which all the elements are essentially made out of hydrogen. Although the hypothesis was initially rejected on the basis of accurate atomic weight determinations, it underwent a revival in the twentieth century. As mentioned in chapter 6, the discoveries of Anton van den Broek, Henry Moseley, and others showed that there is a sense in which all elements are indeed composites of hydrogen.


Sign in / Sign up

Export Citation Format

Share Document