Rapid recovery of phytic acid from rice brans using chitosan nanofiber-based porous hydrogels

2021 ◽  
Vol 85 (3) ◽  
pp. 481-487
Author(s):  
Sachiko Nitta ◽  
Hiroyuki Iwamoto

ABSTRACT Phytic acid (PA) is a new type of naturally occurring pharmaceutical for afflictions such as cancer, diabetes, and renal calculi. The efficient, low-cost extraction of PA from biowaste is much sought after. Herein, highly pure PA was obtained from rice bran by adsorption at low pH onto porous chitosan nanofiber hydrogels. Due to the large surface area of the chitosan nanofiber-based porous hydrogels, the adsorption equilibrated within 60 min. Adsorption of PA was influenced by the buffer pH, temperature, and the ratio of chitosan in the hydrogel. PA was recovered by soaking the hydrogel in alkaline solution. After concentrating the solution and washing the residue with ethanol, highly pure sodium phytate was obtained with 32.2%-38.7% yield, as confirmed by Fourier transform infrared and high-performance liquid chromatography. To our knowledge, this is the first report on the recovery of pure PA in high yield without using toxic solvents.

2020 ◽  
Vol 4 (10) ◽  
pp. 5313-5326 ◽  
Author(s):  
S. Rajkumar ◽  
E. Elanthamilan ◽  
J. Princy Merlin ◽  
I. Jenisha Daisy Priscillal ◽  
I. Sharmila Lydia

The as-synthesized CuCo2O4/PANI nanocomposite has emerged as a new type of electrode material for energy storage applications due to its low cost and sustainable and high electrochemical performance.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Dan Xue ◽  
Jiachou Wang ◽  
Xinxin Li

In this paper, we present a novel thermoresistive gas flow sensor with a high-yield and low-cost volume production by using front-side microfabricated technology. To best improve the thermal resistance, a micro-air-trench between the heater and the thermistors was opened to minimize the heat loss from the heater to the silicon substrate. Two types of gas flow sensors were designed with the optimal thermal-insulation configuration and fabricated by a single-wafer-based single-side process in (111) wafers, where the type A sensor has two thermistors while the type B sensor has four. Chip dimensions of both sensors are as small as 0.7 mm × 0.7 mm and the sensors achieve a short response time of 1.5 ms. Furthermore, without using any amplification, the normalized sensitivity of type A and type B sensors is 1.9 mV/(SLM)/mW and 3.9 mV/(SLM)/mW for nitrogen gas flow and the minimum detectable flow rate is estimated at about 0.53 and 0.26 standard cubic centimeter per minute (sccm), respectively.


Author(s):  
Shimeng Zhao ◽  
Jialin Li ◽  
Haixia Chen ◽  
Jianxin Zhang

Abstract Rechargeable aluminum ion batteries (AIBs) have attracted much attention because of their high charge density, low cost, and low flammability. Transition metal sulfides are a class of cathode materials that have been extensively studied. In this report, Bi2S3 nanorods and Bi2S3/MoS2 nanorods were synthesized by the hydrothermal method as new type of cathode materials for rechargeable AIBs. The diameter of Bi2S3/MoS2 nanorods is 20–100 nm. The Bi2S3 nanorods display high initial charge and discharge capacities of 343.3 and 251 mA h/g with a current density of 1 A/g. The static cycling for the Bi2S3/MoS2 nanorods electrode at 1 A/g denotes high stability with a specific capacity of 132.9 mA h/g after 100 cycles. The charging voltage platform of Bi2S3 nanorods and Bi2S3/MoS2 nanorods is at 1.1–1.4 V, and the discharge voltage platform is at around 0.8 V. The well-defined heterojunction maintains the stability of the Bi2S3 structure during long-term cycling, which is desirable for aluminum ion batteries. This strategy reveals new insights for designing cathode materials of high-performance AIBs.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1264-1265
Author(s):  
Yuanli Wang ◽  
Delu Liu ◽  
Jie Fu ◽  
Jian Zhu

Much attention has been devoted to develop the new generation of microalloyed steels in recent years to meet the needs of high performance and low cost for the 21st century. The new type of steels is characterized by reduced carbon content, improved cleanness and refined grain size through the phase transformations.11'21 Precipitation of the carbonitrides in the steels is also one of the keypoints for controlling mechanical properties of the steels.In the present work ultra-low carbon clean microalloyed steels, which contain 0.029∽0.047(wt)%C, 1.48∽1.54(wt)% Mn, 0.044∽0.052(wt)%Nb, 0.025∽0.044Ti(wt)%, 0.0015∽0.0020(wt)%B and 0.0045∽0.0070(wt)%N, were prepared in a vacuum induction furnace in laboratory. The contents of S and P of the steels are 0.0005(wt)% and 0.0010∽0.0024(wt)% respectively. Total amount of the impurity elements O, S, P and H in the steels is 0.0061∽0.0077%. Dominant component of the structure in both casting and as-forged samples is acicular ferrite or bainite.


Nanophotonics ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 371-391 ◽  
Author(s):  
Yan-Gang Bi ◽  
Jing Feng ◽  
Jin-Hai Ji ◽  
Fang-Shun Yi ◽  
Yun-Fei Li ◽  
...  

AbstractLightweight and low-cost organic photovoltaics (OPVs) hold great promise as renewable energy sources. The most critical challenge in developing high-performance OPVs is the incomplete photon absorption due to the low diffusion length of the carrier in organic semiconductors. To date, various attempts have been carried out to improve light absorption in thin photoactive layer based on optical engineering strategies. Nanostructure-induced light harvesting in OPVs offers an attractive solution to realize high-performance OPVs, via the effects of antireflection, plasmonic scattering, surface plasmon polarization, localized surface plasmon resonance and optical cavity. In this review article, we summarize recent advances in nanostructure-induced light harvesting in OPVs and discuss various light-trapping strategies by incorporating nanostructures in OPVs and the fabrication processing of the micro-patterns with high resolution, large area, high yield and low cost.


2012 ◽  
Vol 22 (12) ◽  
pp. 5560 ◽  
Author(s):  
Keyu Xie ◽  
Zhouguang Lu ◽  
Haitao Huang ◽  
Wei Lu ◽  
Yanqing Lai ◽  
...  

1998 ◽  
Vol 514 ◽  
Author(s):  
Simon Yang

ABSTRACTInterconnect delay is believed to have a dominating impact on the speed of large logic circuits (such as micro-processors) when the Si technology is scaled into sub- 0.25um generations. In this paper, we analyzed interconnect scaling issues based on leading micro-processor trend data, simple RC delay model and the “Rents' rule”. It was concluded that, in order to not limit the speed of large logic circuits, “fat” metal wires need to be used for upper metal layers, which will lead to a rapid increase of required number of metal layers (>10) for sub-0.25um technology generations. Introducing Cu and low ε interconnect system can delay this rapid increase by ∼1 generation. Creating multiple clock frequencies in large logic chips and reducing the size of high frequency islands appears effective in containing the interconnection delay problem. Therefore, the proposed interconnection scaling/development strategy is to introduce Cu and low ε dielectric into manufacturing in next 1∼3 generation (0.25um∼0.13um), develop low cost and high yield interconnect system to enable ∼10 interconnect layers, and improve circuit design methodology to reduce high frequency island size.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000708-000735 ◽  
Author(s):  
Zhaozhi Li ◽  
John L. Evans ◽  
Paul N. Houston ◽  
Brian J. Lewis ◽  
Daniel F. Baldwin ◽  
...  

The industry has witnessed the adoption of flip chip for its low cost, small form factor, high performance and great I/O flexibility. As the Three Dimensional (3D) packaging technology moves to the forefront, the flip chip to wafer integration, which is also a silicon to silicon assembly, is gaining more and more popularity. Most flip chip packages require underfill to overcome the CTE mismatch between the die and substrate. Although the flip chip to wafer assembly is a silicon to silicon integration, the underfill is necessary to overcome the Z-axis thermal expansion as well as the mechanical impact stresses that occur during shipping and handling. No flow underfill is of special interest for the wafer level flip chip assembly as it can dramatically reduce the process time as well as bring down the average package cost since there is a reduction in the number of process steps and the dispenser and cure oven that would be necessary for the standard capillary underfill process. Chip floating and underfill outgassing are the most problematic issues that are associated with no flow underfill applications. The chip floating is normally associated with the size/thickness of the die and volume of the underfill dispensed. The outgassing of the no flow underfill is often induced by the reflow profile used to form the solder joint. In this paper, both issues will be addressed. A very thin, fine pitch flip chip and 2x2 Wafer Level CSP tiles are used to mimic the assembly process at the wafer level. A chip floating model will be developed in this application to understand the chip floating mechanism and define the optimal no flow underfill volume needed for the process. Different reflow profiles will be studied to reduce the underfill voiding as well as improve the processing yield. The no flow assembly process developed in this paper will help the industry understand better the chip floating and voiding issues regarding the no flow underfill applications. A stable, high yield, fine pitch flip chip no flow underfill assembly process that will be developed will be a very promising wafer level assembly technique in terms of reducing the assembly cost and improving the throughput.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000627-000634
Author(s):  
D. DeRoo ◽  
K. Shcheglov ◽  
M. Inbar ◽  
D. Smukowski ◽  
P. Zappella ◽  
...  

Sensors in Motion Inc. is developing a navigation grade 6 DOF MEMS INS using its proprietary and patented technologies. The military is investing in INS and IMU technology which can answer its needs as well as provide the baseline for hundreds of other DOD and commercial applications which need a C-swap sensitive utility. SIM’s technology for MEMS gyros was conceived to address past problems associated with MEMS gyroscopes while leveraging the C-swap benefits of high volume, high yield batch fabrication, automated packaging, self-calibration, and thermal compensation. A key requirement for the MEMS Gyroscope is controlled vacuum-levels to obtain high Q devices. Gyro die are packaged using a multilayer package and getter system, which provides and maintains sealed vacuum cavities. Die are assembled into the LCC package using conventional assembly techniques and the package cavity is sealed using an SST 3150 high-vacuum sealing system. The SST system is used to activate a thin-film getter layer on the package lid before reflow of the solder seal. Resulting pressure levels have been determined by characterizing packaged but unlidded sensor die in a vacuum chamber. The package material, process flow and test results are summarized and reviewed. Tooling, process parameters, and test techniques are explained.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 901
Author(s):  
Aneeqa Bashir ◽  
Hina Siddiqui ◽  
Shahzad Naseem ◽  
Arshad Saleem Bhatti

This paper demonstrates the high yield and cost effectiveness of a simple and ecofriendly water-based solution processing, to produce Zinc-doped Zirconia (Zn-ZrO2) composite thin films, onto glass substrates, with excellent optical properties that make them of great interest for optical and microelectronics technologies. The effect of Zn variation (given as 10, 15, 20 at.%) on the crystallization, microstructure, and optical properties of ZrO2 film was examined. The addition of Zn did not restructure the ZrO2 lattice, as the results indicated by X-ray diffraction (XRD) and Raman spectroscopy revealed neither any mixed or individual phases; rather, all the films retained the amorphousness. Nonetheless, Zn did control the grain formation at the film surfaces, thereby changing the surface morphology. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) evidenced homogeneous, compact, crack-free, and dense films with surface roughness below 2 nm indicating smooth surfaces. The films were highly transparent (>80%) with tunable optical band gap Eg (5.21 to 4.66 eV) influenced by Zn dopant. Optical constants such as refractive index (n), extinction coefficient (k), and dielectric constant (ε) were obtained from spectroscopic ellipsometry (SE), and a correlation was established with respect to the doping level. A high value of n > 2 value indicated high packing density in these films, and it decreased slightly from 2.98 to 2.60 (at 632 nm); whereas, optical losses were brought down with increasing Zn indicated by decreasing k values. The photoluminescence (PL) spectra showed UV emissions more pronounced than the blue emissions indicating good structural quality of all the films. Nonetheless, added defects from Zn had suppressed the PL emission. The technique presented in this work, thus, manifests as high performance and robust and has the potential comparable to the sophisticated counter techniques. Furthermore, the Zn-ZrO2 films are promising for a low-cost solution to processed microelectronics and optical technologies after reaching high performance targets with regards to the electrical properties.


Sign in / Sign up

Export Citation Format

Share Document