scholarly journals The Mechanisms of Glutamine- and Fish Oil-Supplemented Resuscitation Fluids on Alleviating Oxidative Stress of the Lung and Liver in Rats with Trauma-Hemorrhagic Shock

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 429-429
Author(s):  
Bing-Xiang Liu ◽  
Hui-Chen Lo ◽  
Chien-Hsing Lee

Abstract Objectives Oxidative stress has been demonstrated to be the cause of cellular and organ damage in patients with trauma hemorrhagic shock and reperfusion (THR). Our previous study showed that resuscitation fluids supplemented with glutamine and fish oil, the antioxidants with anti-inflammatory activities, may alleviate systemic inflammatory response and oxidative stress in the THR rats. The aim of this study was to further investigate the mechanisms of these supplements on alleviating THR-induced damage in the lung and liver, i.e., the 2 vulnerable organs in THR. Methods Male Wistar rats were suffered with 5 cm midline laparotomy and 2 catheterizations in the left carotid artery and right jugular vein individually for blood drawn to a mean arterial pressure 30 to 35 mmHg for 60 minutes and for resuscitation of shed blood and lactate Ringer's solution with or without L-alanyl-L-glutamine (13.5 mmole/kg/day) and/or fish oil (0.5 g/kg/day) within 10 minutes. The different resuscitation fluids were continuous infused (∼1.4 ml/h) for 42 hr. Normal healthy rats and intubation sham-operated rats were included as controls. Results In the lung, the THR-increased lipid peroxidation and toll-like receptor 4 (TLR4) were significantly decreased by glutamine with or without fish oil (one-way ANOVA, P < 0.05). Fish oil was the main factor to decrease myeloperoxidase and activated caspase 3 in the lung of the THR rats (two-way ANOVA, P < 0.05). In the liver, the THR-increased lipid peroxidation and TLR4 and the THR-decreased catalase activity were improved by glutamine and/or fish oil. In addition, fish oil was the main factor to decrease inducible and endothelial nitric oxide synthase (NOS) and to increase IkB and phosphorylated NF-kB and glutamine was the main factor to decrease activated caspase 3 in the liver of the THR rats. Conclusions These results suggest that fish oil may alleviate neutrophil infiltration and NOS activation and fish oil and glutamine may elevate catalase activity and alleviate apoptosis to attenuate the THR-induced damage in the lung and liver. Funding Sources MOST 102-2320-B-030-005-MY3.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christina D’Agrosa ◽  
Charles L. Cai ◽  
Faisal Siddiqui ◽  
Karen Deslouches ◽  
Stephen Wadowski ◽  
...  

Abstract Background Neonatal intermittent hypoxia (IH) results in oxidative distress in preterm infants with immature antioxidant systems, contributing to lung injury. Coenzyme Q10 (CoQ10) and fish oil protect against oxidative injury. We tested the hypothesis that CoQ10 is more effective than fish oil for prevention of IH-induced lung injury in neonatal rats. Methods Newborn rats were exposed to two clinically relevant IH paradigms at birth (P0): (1) 50% O2 with brief hypoxia (12% O2); or (2) room air (RA) with brief hypoxia (12% O2), until P14 during which they were supplemented with daily oral CoQ10, fish oil, or olive oil from P0 to P14. Pups were studied at P14 or placed in RA until P21 with no further treatment. Lungs were assessed for histopathology and morphometry; biomarkers of oxidative stress and lipid peroxidation; and antioxidants. Results Of the two neonatal IH paradigms 21%/12% O2 IH resulted in the most severe outcomes, evidenced by histopathology and morphometry. CoQ10 was effective for preserving lung architecture and reduction of IH-induced oxidative stress biomarkers. In contrast, fish oil resulted in significant adverse outcomes including oversimplified alveoli, hemorrhage, reduced secondary crest formation and thickened septae. This was associated with elevated oxidants and antioxidants activities. Conclusions Data suggest that higher FiO2 may be needed between IH episodes to curtail the damaging effects of IH, and to provide the lungs with necessary respite. The negative outcomes with fish oil supplementation suggest oxidative stress-induced lipid peroxidation.


2010 ◽  
Vol 30 (7) ◽  
pp. 616-623 ◽  
Author(s):  
Premila Abraham ◽  
Bina Isaac

Nephrotoxicity is one of the adverse side effects of cyclophosphamide (CP) chemotherapy. In a recent study, we have demonstrated that oxidative stress and glutathione depletion play important roles in CP-induced renal damage. The aim of the study was to verify whether glutamine, the precursor for glutathione synthesis, prevents CP-induced oxidative stress and renal damage using a rat model. Adult male rats were administered a single dose of 150 mg/ kg body weight of CP intraperitoneally. The glutamine-pretreated rats were administered 1 gm/kg body weight of glutamine orally 2 h before the administration of CP. Vehicle/glutaminetreated rats served as controls. All the rats were killed 16 h after the dose of CP/vehicle. The kidneys were removed and used for light microscopic and biochemical studies. The markers of oxidative stress including malondialdehyde content, protein carbonyl content, protein thiol, reduced glutathione and myeloperoxidase activity, a marker of neutrophil infiltration, were measured in kidney homogenates. CP treatment-induced damage to kidney involved the glomeruli and the tubules. Pretreatment with glutamine reduced CP-induced glutathione depletion and increased myeloperoxidase activity. However, it did not prevent CP-induced lipid peroxidation, protein carbonylation and renal damage. The results of the present study suggest that glutamine pretreatment does not prevent CP-induced lipid peroxidation and renal damage, although it prevents CP-induced glutathione depletion and neutrophil infiltration significantly. It is suggested that mechanisms other than oxidative stress may also be involved and/or oxidative stress may be consequence and not the cause of CP induced renal damage.


2001 ◽  
Vol 2 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Robert M. Strother ◽  
Tonya G. Thomas ◽  
Mary Otsyula ◽  
Ruth A. Sanders ◽  
John B. Watkins III

Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 662
Author(s):  
Gary P. Zaloga

Fish oil supplementation is commonplace in human nutrition and is being used in both enteral and parenteral formulations during the treatment of patients with a large variety of diseases and immune status. The biological effects of fish oil are believed to result from their content of n-3 polyunsaturated fatty acids (PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). These fatty acids are known to have numerous effects upon immune functions and are described as immunomodulatory. However, immunomodulatory is a nondescript term that encompasses immunostimulation and immunosuppression. The primary goal of this review is to better describe the immune effects of n-3 PUFA as they relate to immunostimulatory vs. immunosuppressive effects. One mechanism proposed for the immune effects of n-3 PUFA relates to the production of specialized pro-resolving mediators (SPMs). A second goal of this review is to evaluate the effects of n-3 PUFA supplementation upon production of SPMs. Although n-3 PUFA are stated to possess anti-oxidative properties, these molecules are highly oxidizable due to multiple double bonds and may increase oxidative stress. Thus, the third goal of this review is to evaluate the effects of n-3 PUFA upon lipid oxidation. We conclude, based upon current scientific evidence, that n-3 PUFA suppress inflammatory responses and most cellular immune responses such as chemotaxis, transmigration, antigen presentation, and lymphocyte functions and should be considered immunosuppressive. n-3 PUFA induced production of resolution molecules is inconsistent with many resolution molecules failing to respond to n-3 PUFA supplementation. n-3 PUFA supplementation is associated with increased lipid peroxidation in most studies. Vitamin E co-administration is unreliable for prevention of the lipid peroxidation. These effects should be considered when administering n-3 PUFA to patients that may be immunosuppressed or under high oxidative stress due to illness or other treatments.


2011 ◽  
Vol 108 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Inger Ottestad ◽  
Gjermund Vogt ◽  
Kjetil Retterstøl ◽  
Mari C. Myhrstad ◽  
John-Erik Haugen ◽  
...  

Intake of fish oil reduces the risk of CHD and CHD deaths. Marine n-3 fatty acids (FA) are susceptible to oxidation, but to our knowledge, the health effects of intake of oxidised fish oil have not previously been investigated in human subjects. The aim of the present study was to investigate markers of oxidative stress, lipid peroxidation and inflammation, and the level of plasma n-3 FA after intake of oxidised fish oil. In a double-blinded randomised controlled study, healthy subjects (aged 18–50 years, n 54) were assigned into one of three groups receiving capsules containing either 8 g/d of fish oil (1·6 g/d EPA+DHA; n 17), 8 g/d of oxidised fish oil (1·6 g/d EPA+DHA; n 18) or 8 g/d of high-oleic sunflower oil (n 19). Fasting blood and morning spot urine samples were collected at weeks 0, 3 and 7. No significant changes between the different groups were observed with regard to urinary 8-iso-PGF2α; plasma levels of 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and α-tocopherol; serum high sensitive C-reactive protein; or activity of antioxidant enzymes in erythrocytes. A significant increase in plasma level of EPA+DHA was observed in both fish oil groups, but no significant difference was observed between the fish oil groups. No changes in a variety of in vivo markers of oxidative stress, lipid peroxidation or inflammation were observed after daily intake of oxidised fish oil for 3 or 7 weeks, indicating that intake of oxidised fish oil may not have unfavourable short-term effects in healthy human subjects.


2003 ◽  
Vol 89 (1) ◽  
pp. 11-18 ◽  
Author(s):  
S. Miret ◽  
M. P. Sáiz ◽  
M. T. Mitjavila

The objective of the present study was to examine the effects of fish oil (FO)- and olive oil (OO)-rich diets on Fe metabolism and oxidative stress. Rats were fed for 16 weeks with diets containing 50 g lipid/g; either OO, maize oil (MO) or FO. OO or MO diets contained a standard amount (100 m/g) of all-rac-α-tocopheryl acetate. FO diets were supplemented with 0, 100 or 200 mg all-rac-α-tocopheryl acetat/g (FO-0, FO-1 or FO-2 diets, respectively). At the end of the feeding period, we measured non-haem Fe stores in liver and spleen, and erythrocyte and reticulocyte count. We also determined antioxidants and products derived from lipid peroxidation in plasma and erythrocytes. Our results showed reduced non-haem Fe stores in rats fed any of the FO diets. Reticulocyte percentage was higher in the rats fed FO-0 and FO-1. Plasma α-tocopherol was very low in rats fed the FO-0 diet. Rats fed the FO-1 and FO-2 diets showed higher α-tocopherol in plasma than the FO-0 group but lower than the MO or OO groups. We did not observe such differences in the α-tocopherol content in erythrocyte membranes. Superoxide dismutase and glutathione peroxidase activities were lower in the erythrocytes of rats fed the FO-0 diet. The products derived from lipid peroxidation were also higher in the FO groups. The administration of FO-rich diets increased lipid peroxidation and affected Fe metabolism. On the other hand, the OO-rich diet did not increase oxidative stress and did not alter Fe metabolism. Based on these results, we conclude that FO supplementation should be advised carefully.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3511
Author(s):  
Wafaa S. Ramadan ◽  
Saleh Alkarim

Patients suffering from Alzheimer’s disease (AD) are still increasing worldwide. The development of (AD) is related to oxidative stress and genetic factors. This study investigated the therapeutic effects of ellagic acid (EA) on the entorhinal cortex (ERC), which plays a major role in episodic memory, in the brains of an AD rat model. AD was induced using AlCl3 (50 mg/kg orally for 4 weeks). Rats were divided into four groups: control, AD model, EA (treated with 50 mg/kg EA orally for 4 weeks), and ADEA (AD rats treated with EA after AlCl3 was stopped) groups. All rats were investigated for episodic memory using the novel object recognition test (NORT), antioxidant serum biomarkers, lipid peroxidation, histopathology of the ERC, and quantitative PCR for the superoxide dismutase (SOD) gene. EA therapy in AD rats significantly increased the discrimination index for NORT and the levels of SOD, glutathione, and total antioxidant capacity. Lipid peroxidation products were decreased, and the neurofibrillary tangles and neuritic plaques in the ERC sections were reduced after EA administration. The decrease in ERC thickness in the AD group, caused by caspase-3-mediated apoptosis and neurotoxicity due to amyloid precursor protein, was modulated by the increased SOD mRNA expression. Adjustment of the ERC antioxidant environment and decreased oxidative stress under EA administration enhanced SOD expression, resulting in the modulation of amyloid precursor protein toxicity and caspase-3-mediated apoptosis, thereby restoring episodic memory.


Author(s):  
Mina Adampourezare ◽  
Parisa Sistani ◽  
Homeira Hatami Nemati

Introduction: Diazinon (DZN) administration produces lipid peroxidation as an indicator of oxidative stress in the brain. Some medicinal plants such as Dorema glabrum has antioxidant properties, so can be used as an antioxidant that may protect neurons from oxidative stress. The aim of present study was to investigate the effect of D. glabrum against DZN-induced oxidative stress in hippocampus. Methods: Twenty-four adult male Wistar rats were used in this study. The rats randomly were divided into four groups including a control group, and two groups received different doses of D. glabrum (40 and 80 mg/kg) as pre-treatment for 21 days with DZN (100 mg/Kg) that was injected intraperitoneally (ip) in last day of D. glabrum usage, and one group received only DZN. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidant enzymes (glutathione peroxidase, superoxide dismutase and catalase) were determined in the ratsʼ hippocampus. Results: Administration of DZN significantly increased TBARS levels and superoxide dismutase activity and decreased glutathione peroxidase activity but there were no significant changes in catalase activity in the hippocampus. Combined D. glabrum and DZN treatment, caused a significant increase in glutathione peroxidase, a significant decrease of TBARS and a significant decrease in superoxide dismutase and again no significant changes in catalase activity in the rats’ hippocampus when compared to the rats treated with DZN. Conclusion: Our study demonstrated that D. glabrum had an amelioratory effect on oxidative stress induced by DZN.


2020 ◽  
pp. 23-27
Author(s):  
Helen Nwamba Ogochukwu ◽  
Cosmas Ezekaibeya Achikanu

The oxidative stress indices lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) in juvenile Clarias gariepinus (average weight 200.15 g) exposed to sub - lethal dose 2.40mg/L and 4.98mg/L of glyphosate was investigated over a period of days 1,5,10 and 15 in three replicates. The colorimetric analysis showed increase in lipid peroxidation from 4.55 ±2.14a1 to 12.12± 10.00a1at 2.40mg/L but remain the same at 4.98mg/L (4.55±2.14a1) compared with control (3.03±0.01a1 to 1.51±2.14b1) from day 1 to 15. The SOD activity decreased significantly with time and concentration compared with control. The Catalase activity at day 15 decreased to 0.17±0.05a1 in 2.40mg/L but further increased to 0.28±0.05b1 in 4.98mg/L compared to 0.28±0.02a1 catalase activity as control. The result suggests that glyphosate induce oxidative stress that may overwhelm the antioxidant system in juvenile catfish especially at higher concentrations with long exposure.


Sign in / Sign up

Export Citation Format

Share Document