scholarly journals Wastewater surveillance of SARS-CoV-2 corroborates heightened community infection during the initial peak of COVID-19 in Bexar County, Texas

FEMS Microbes ◽  
2021 ◽  
Author(s):  
Haya Al-Duroobi ◽  
Sina V Moghadam ◽  
Duc C Phan ◽  
Arash Jafarzadeh ◽  
Akanksha Matta ◽  
...  

Abstract The purpose of this study was to conduct a preliminary assessment of the levels of SARS-CoV-2 RNA in wastewater at the Salitrillo Wastewater Treatment Plant in Texas during the initial peak of COVID-19 outbreak. Raw wastewater influent (24 h composite, time-based 1 L samples, n = 13) was collected weekly during June-August 2020. We measured SARS-CoV-2 RNA in wastewater by reverse transcription droplet digital PCR (RT-ddPCR) using the same N1 and N2 primer sets employed in COVID-19 clinical testing. Virus RNA copies for positive samples (77%) ranged from 1.4×102 to 4.1×104 copies per liter of wastewater, and exhibited both increasing and decreasing trends, which corresponded well with the COVID-19 weekly infection rate (N1: ρ = 0.558, P = 0.048; and N2: ρ = 0.487, P = 0.092). A sharp increase in virus RNA concentrations was observed during July sampling dates, consistent with highest number of COVID-19 cases reported. This could be attributed to an increase in the spread of COVID-19 infection due to the July 4 holiday week gatherings (outdoor gatherings were limited to 100 people during that time). Our data show that wastewater surveillance is an effective tool to determine trends in infectious disease prevalence, and provide complimentary information to clinical testing.

Author(s):  
Alissa Udi Jorgensen ◽  
Jesper Gamst ◽  
Line Visby Hansen ◽  
Ida Ingeborg Hogh Knudsen ◽  
Soren Krohn Skovgaard Jensen

The Eurofins Covid-19 SentinelTM program was developed to monitor the evolution of the pandemic and for early detection of outbreaks. The study objective was to develop a wastewater testing method to analyze SARS-CoV-2 as an indicator of community infection rate resurgence of COVID-19 or in well-defined sites such as production facilities or nursing homes. Eurofins performed >700 tests on 78 unique samples from 18 sites in Denmark, France and Belgium. Ten variant test protocols were trialed. Protocol variations trialed included centrifugation, precipitation of the SARS-CoV-2 RNA, agitation prior to precipitation, cooling, and pasteurization of the samples. A method was succesfully developed and reliability was supported by stability, reproducibility, and dilution & linearity studies. Results obtained showed a direct link to number of RNA copies in the sample using a calibration curve with synthetic SARS-CoV-2. Analysis was performed on both the liquid phase and solid phase of wastewater samples, with virus RNA detected in both phases but more frequently in the liquid phase. The virus was present in a sample from a Danish community wastewater treatment plant collected on February 24, 3 days before the first COVID-19 case was officially reported in the country. The greatest concentration of virus detected corresponded to when the COVID-19 crisis was at its peak in Denmark. Based on studies carried out in a Danish hospital, the wastewater testing method is expected to be able to detect a community COVID-19 prevalence rate as low as a 0,02%-0,1% (i.e. between 2 virus shedders per 10000 and 1 virus shedder per 1000). The wastewater testing method was used to monitor a Danish Community after a COVID-19 outbreak and it was shown that the method can be used as a semi-quantitative method to monitor the development of an outbreak.


1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 243 ◽  
Author(s):  
Teruaki Tozaki ◽  
Aoi Ohnuma ◽  
Masaki Takasu ◽  
Mio Kikuchi ◽  
Hironaga Kakoi ◽  
...  

Indiscriminate genetic manipulation to improve athletic ability is a major threat to human sports and the horseracing industry, in which methods involving gene-doping, such as transgenesis, should be prohibited to ensure fairness. Therefore, development of methods to detect indiscriminate genetic manipulation are urgently needed. Here, we developed a highly sensitive method to detect horse erythropoietin (EPO) transgenes using droplet digital PCR (ddPCR). We designed two TaqMan probe/primer sets, and the EPO transgene was cloned into a plasmid for use as a model. We extracted the spiked EPO transgene from horse plasma and urine via magnetic beads, followed by ddPCR amplification for absolute quantification and transgene detection. The results indicated high recovery rates (at least ~60% and ~40% in plasma and urine, respectively), suggesting successful detection of the spiked transgene at concentrations of >130 and 200 copies/mL of plasma and urine, respectively. Additionally, successful detection was achieved following intramuscular injection of 20 mg of the EPO transgene. This represents the first study demonstrating a method for detecting the EPO transgene in horse plasma and urine, with our results demonstrating its efficacy for promoting the control of gene-doping in the horseracing industry.


2019 ◽  
Vol 23 (10) ◽  
pp. 1783-1786
Author(s):  
MI Ugwoke ◽  
DA Machido ◽  
MB Tijjani

Biofilm producing bacteria are associated with many recalcitrant infections and are highly resistant to antimicrobial agents, hence notoriously difficult to eradicate. This study aimed at determining the biofilm forming capacities of bacterial isolates recovered in the raw wastewater and treated effluent from Wastewater Treatment Plants of Ahmadu Bello University Zaria using Tube Method (TM) and Congo Red Agar (CRA) method; and from the results, among the isolates recovered from the raw wastewater, TM detected 62.5% isolates as positive and 37.5% as negative for biofilm production, CRA detected 37.5% isolates as positive and 62.5% as negative for biofilm production. TM also demonstrated to be more suitable in detecting biofilm producing bacterial isolates from the treated effluent were it detected 50% isolates as positive and 50% as negative. However, CRA detected only 12.5% isolates as positive and 87.5% as negative for biofilm production. We therefore, conclude that the TM is more efficient and reliable for detection of biofilm producing bacteria in the laboratory when compared to CRA method and can be recommended as one of the suitable standard screening method for the detection of biofilm producing bacteria in laboratories.Keywords: Biofilm; Bacteria; Congo red agar and Tube method


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Li ◽  
Li-Bin Ding ◽  
Ang Cai ◽  
Guo-Xian Huang ◽  
Harald Horn

Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated thatFlavobacteriumsp., uncultured beta proteobacterium, unculturedAquabacteriumsp., and unculturedLeptothrixsp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 11551-11551
Author(s):  
Lino Moehrmann ◽  
Helen J. Huang ◽  
David S. Hong ◽  
Apostolia Maria Tsimberidou ◽  
Siqing Fu ◽  
...  

11551 Background: Blood-based liquid biopsies offer easy accessible genomic material for molecular diagnostics in cancer. Commonly used cell-free DNA (cfDNA) originates from dying cells. In contrast exosomal nucleic acid (exoNA) originates from living cells, which can better reflect underlying cancer biology. Methods: We isolated exoNA (EXO52) and cfDNA (QIAamp Circulating Nucleic Acid kit) from plasma of patients with progressing advanced cancers and tested for BRAFV600, KRASG12/G13, and EGFRexon19del/L858R mutations using next-generation sequencing (EXO1000), droplet digital PCR (ddPCR, QX200) and BEAMing digital PCR. The results were compared to clinical testing of archival tumor tissue and correlated with survival. Results: Of the 43 patients (colorectal cancer, 20; melanoma, 8; non-small cell lung cancer, 6; ovarian cancer, 2; papillary thyroid cancer, 2; other cancers, 5) 41 had a mutation in the tumor tissue (20 [47%] BRAF mutation, 17 [40%] KRAS mutation and 4 [9%] EGFR mutation). Mutation testing of plasma exoNA from all 43 patients detected 39 (95%) of 41 mutations present in tumor tissue with 100% specificity. Mutation testing of plasma cfDNA from 39 patients using ddPCR detected 33 (89%) of 37 mutations present in tumor and testing of plasma cfDNA from 37 patients using BEAMing detected 34 (97%) of 35 mutations present in tumor tissue; however, both cfDNA methods reported an additional KRAS mutation not present in tumor tissue. Patients with high mutation allele frequency (MAF, > median) had shorter median survival compared to patients with low MAF ( < median) when using exoNA (5.9 vs. 11.8 months, P= 0.006), but not cfDNA ddPCR (6.0 vs. 7.4 months, P= 0.06) or cfDNA BEAMing (6.5 vs. 7.4 month, P= 0.07). High MAF in exoNA was an independent prognostic factor for survival in multicovariate analysis (HR 0.13, P= 0.017). Conclusions: Mutation testing of plasma exoNA for common BRAF, KRAS, and EGFR mutations has high sensitivity compared to clinical testing of archival tumor tissue and better specificity than PCR testing of plasma cfDNA. High MAF in exoNA is the independent prognostic factor for shorter survival.


2017 ◽  
Vol 24 (1) ◽  
pp. 195-206 ◽  
Author(s):  
Sylwia Myszograj ◽  
Ewelina Płuciennik-Koropczuk ◽  
Anita Jakubaszek

Abstract The paper presents the results of studies concerning the designation of COD fraction in raw wastewater. The research was conducted in four municipal mechanical-biological sewage treatment plants and one industrial sewage treatment plant. The following fractions of COD were determined: non-biodegradable (inert) soluble SI, biodegradable soluble fraction SS, particulate slowly degradable XS and particulate non-biodegradable XI. The methodology for determining the COD fraction was based on the ATV-A131 guidelines and Łomotowski-Szpindor methodology. The real concentration of fractions in raw wastewater and the percentage of each fraction in total COD are different from data reported in the literature.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1010
Author(s):  
Maria Teresa Montagna ◽  
Osvalda De Giglio ◽  
Carla Calia ◽  
Chrysovalentinos Pousis ◽  
Francesco Triggiano ◽  
...  

This study investigated the environmental contamination of groundwater as a consequence of the discharge of treated wastewater into the soil. The investigation focused on a wastewater treatment plant located in an area fractured by karst in the Salento peninsula (Apulia, Italy). Water samples were collected at four sites (raw wastewater, treated wastewater, infiltration trench, and monitoring well), monthly from May to December 2019 (with the exception of August), and were tested for (1) panel of bacteria; (2) enteric viruses; and (3) chemical substances. A gradual reduction in the concentration of bacteria, viruses and contaminants of emerging concern was observed across the profile of soil fissured by karst. All monitored bacteria were absent from the monitoring well, except for Pseudomonas aeruginosa. Pepper mild mottle virus and adenovirus were detected at all sampling sites. Personal care products and X-ray contrast media showed the greatest decrease in concentration from infiltration trench to the monitoring well, while the highest residual concentrations in the monitoring well were found for anticonvulsants (78.5%), antimicrobials (41.3%), and antipsychotic drugs (38.6%). Our results show that parameters provided by current law may not always be sufficient to evaluate the sanitary risk relating to the discharge of treated wastewater to the soil.


Sign in / Sign up

Export Citation Format

Share Document