scholarly journals Photoregulation of the Cat2 and Cat3 catalase genes in pigmented and pigment-deficient maize: the circadian regulation of Cat3 is superimposed on its quasi-constitutive expression in maize leaves.

Genetics ◽  
1991 ◽  
Vol 127 (3) ◽  
pp. 601-607 ◽  
Author(s):  
A Acevedo ◽  
J D Williamson ◽  
J G Scandalios

Abstract We have investigated the accumulation of Cat2 and Cat3 catalase transcripts in 6-7-day postimbibition leaves of normally pigmented and pigment-deficient maize seedlings under different light regimes. In seedlings of normal inbred maize lines Cat2 mRNA accumulates to significantly higher levels in either continuous light or a diurnal light/dark cycle than in continuous dark. In contrast to the high levels of the Cat2 message observed in their wild-type siblings, carotenoid-deficient mutants accumulate Cat2 mRNA at barely detectable levels. Mutants deficient in chlorophylls, but having normal carotenoid levels, accumulate normal levels of Cat2 mRNA. This suggests that both light and carotenoids are required for the normal accumulation of the Cat2 message. The steady-state level of Cat3 RNA exhibits a dramatic diurnal variation when seedlings are grown under a 24-hr light/dark cycle. We have previously shown that this variation is at the level of Cat3 gene transcription and is under the control of a novel circadian rhythm. In this study we show that both pigment-deficient mutants and their wild-type siblings exhibit the normal diurnal pattern of Cat3 RNA accumulation. This indicates that photosynthetic pigments, allelic variation, and genetic background do not directly affect the temporal pattern of Cat3 accumulation in leaves. We observed, however, that when normal plants are grown in either continuous light or continuous dark, the Cat3 transcript in leaves is present at uniformly high levels throughout the 24-hr sampling period.(ABSTRACT TRUNCATED AT 250 WORDS)

1987 ◽  
Vol 65 (3) ◽  
pp. 432-437 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Johan A. Hellebust

Stichococcus bacillaris Naeg. (Chlorophyceae) grown on a 12 h light: 12 h dark cycle divides synchronously under photoautotrophic conditions and essentially nonsynchronously under mixotrophic conditions. Photoassimilation of carbon under photoautotrophic conditions was followed by a decline in cell carbon content during the dark period, whereas under mixotrophic conditions cell carbon increased throughout the light–dark cycle. The rates of nitrogen assimilation by cultures grown on either nitrate or ammonium declined sharply during the dark, and these declines were most pronounced under photoautotrophic conditions. Photoautotrophic cells synthesized glutamine synthetase and NADPH – glutamate dehydrogenase (GDH) exclusively in the light, whereas in mixotrophic cells about 20% of the total synthesis of these enzymes during one light–dark cycle occurred in the dark. NADH–GDH was synthesized almost continuously over the entire light–dark cycle. In the dark, both under photoautotrophic and mixotrophic conditions, the alga contained more than 50% of glutamine synthetase in an inactive form, which was reactivated in vitro in the presence of mercaptoethanol and in vivo after returning the cultures to the light. The thermal stability of glutamine synthetase activity was less in light-harvested cells than in dark-harvested cells. The inactivation of glutamine synthetase did not occur in cultures growing either heterotrophically in continuous darkness or photoautotrophically in continuous light. This enzyme appears to be under thiol control only in cells grown under alternating light–dark conditions, irrespective of whether this light regime results in synchronous cell division or not.


1997 ◽  
Vol 17 (11) ◽  
pp. 6303-6310 ◽  
Author(s):  
L Yu ◽  
M A Gorovsky

Although quantitatively minor replication-independent (replacement) histone variants have been found in a wide variety of organisms, their functions remain unknown. Like the H3.3 replacement variants of vertebrates, hv2, an H3 variant in the ciliated protozoan Tetrahymena thermophila, is synthesized and deposited in nuclei of nongrowing cells. Although hv2 is clearly an H3.3-like replacement variant by its expression, sequence analysis indicates that it evolved independently of the H3.3 variants of multicellular eukaryotes. This suggested that it is the constitutive synthesis, not the particular protein sequence, of these variants that is important in the function of H3 replacement variants. Here, we demonstrate that the gene (HHT3) encoding hv2 or either gene (HHT1 or HHT2) encoding the abundant major H3 can be completely knocked out in Tetrahymena. Surprisingly, when cells lacking hv2 are starved, a major histone H3 mRNA transcribed by the HHT2 gene, which is synthesized little, if at all, in wild-type nongrowing cells, is easily detectable. Both HHT2 and HHT3 knockout strains show no obvious defect during vegetative growth. In addition, a mutant with the double knockout of HHT1 and HHT3 is viable while the HHT2 HHT3 double-knockout mutant is not. These results argue strongly that cells require a constitutively expressed H3 gene but that the particular sequence being expressed is not critical.


2010 ◽  
Vol 2 (1) ◽  
pp. 48-56 ◽  
Author(s):  
B. Sailaja ◽  
S. Sivaprasad

Circadian rhythms in the silk gland protein profiles of Bombyx mori were analyzed under 12 h light and 12 h dark cycle (LD), continuous light (LL) and continuous dark (DD) conditions. The phase response curves of protein rhythms indicate the prevalence of a series of silk cycles, each comprising three phases; transcription, translation and consolidation of silk proteins. In the 24h- protein rhythm, the silk cycle repeats every 3h, 42 m under LD, 2h, 36m under LL and 3h under DD. The light and dark conditions advanced the rhythm of each silk cycle by 48m and 24m respectively. As a result the silk gland completes 7 rounds of protein synthesis under LD, 9 rounds under LL and 8 rounds under DD during the 24h-free running time of the rhythm. The light-induced clock-shift in the protein rhythm caused significant gains in economic parameters of sericulture with positive signals for enhancing silk productivity and quality.


1996 ◽  
Vol 271 (3) ◽  
pp. R579-R585 ◽  
Author(s):  
S. Honma ◽  
Y. Katsuno ◽  
K. Shinohara ◽  
H. Abe ◽  
K. Honma

Extracellular concentrations of glutamate and aspartate were measured in the vicinity of rat suprachiasmatic nucleus (SCN) by means of in vivo microdialysis. The concentrations of both excitatory amino acids (EAAs) were higher during the dark phase than during the light under the light-dark cycle, showing pulsatile fluctuations throughout the day. When rats were released into the complete darkness, the 24-h pattern in the aspartate continued for at least one cycle, whereas that in the glutamate disappeared. The nocturnal increases in the EAA levels were not due to the increase of locomotor activity during the nighttime, because the 24-h rhythms were also detected in animals under urethan anesthesia. The patterns of extracellular EAA levels were changed when rats were released into the continuous light. Circadian rhythm was not detected in the glutamate, whereas the 24-h pattern was maintained in the aspartate with the levels increased to various extents. A 30-min light pulse given either at zeitgber time (ZT) 1 or ZT 13 elevated the EAA levels during the latter half of the light pulse, except glutamate by a pulse at ZT 1. The extracellular EAA levels in the vicinity of the rat SCN showed the circadian rhythm with a nocturnal peak and increased in response to the continuous light and a brief light pulse. The aspartate level is considered to be regulated by the endogenous circadian rhythm, but the glutamate levels seems to be modified by the light-dark cycle.


1985 ◽  
Vol 248 (4) ◽  
pp. R434-R438 ◽  
Author(s):  
H. E. Albers ◽  
L. Yogev ◽  
R. B. Todd ◽  
B. D. Goldman

The 24-h patterns of circulating cortisol and corticosterone were determined in male hamsters housed under a 14:10 light-dark cycle. Corticoid levels varied significantly over the 24-h sampling period with peak levels of both hormones occurring near the onset of the daily dark phase. The ratio of cortisol to corticosterone changed dramatically during the day. Corticosterone levels were significantly higher than cortisol during the early part of the light phase; however, cortisol levels became significantly higher than corticosterone when both hormones began their daily rise. To examine whether the circadian rhythm of cortisol secretion could be involved in the physiological control of hamster circadian organization, cortisol was infused at approximately physiological levels into adrenalectomized hamsters either continuously or in a 24-h rhythm. No significant differences were observed in the timing of circadian wheel-running rhythms in hamsters housed in LD 16:8, LD 14:10, or LL when cortisol was infused continuously, in a 24-h rhythm that mimicked the cortisol rhythm of intact hamsters, or in a 24-h rhythm several hours out of phase with the rhythm of intact hamsters. Provision of cortisol in a 24-h rhythm appeared to promote the survival of adrenalectomized hamsters since hamsters receiving a 24-h pattern of cortisol survived the experimental protocol significantly longer than those receiving the same dose of cortisol continuously.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1075
Author(s):  
Mateusz Przyborowski ◽  
Sebastian Gasparis ◽  
Maciej Kała ◽  
Wacław Orczyk ◽  
Anna Nadolska-Orczyk

Wheat (Triticum aestivum L.) grain hardness is determined mainly by variations in puroindoline genes (Pina-D1 and Pinb-D1), which are located on the short arm of chromosome 5D. This trait has a direct effect on the technological properties of the flour and the final product quality. The objective of the study was to analyze the mutation frequency in both Pin genes and their influence on grain hardness in 118 modern bread wheat cultivars and breeding lines cultivated in Poland, and 80 landraces from Poland. The PCR products containing the Pin gene coding sequences were sequenced by the Sanger method. Based on detected the SNPs (single-nucleotide polymorphisms) we designed CAPS (cleaved amplified polymorphic sequence) markers for the fast screening of Pinb alleles in a large number of genotypes. All analyzed cultivars, breeding lines, and landraces possess the wild-type Pina-D1a allele. Allelic variation was observed within the Pinb gene. The most frequently occurring allele in modern wheat cultivars and breeding lines (over 50%) was Pinb-D1b. The contribution of the remaining alleles (Pinb-D1a, Pinb-D1c, and Pinb-D1d) was much less (approx. 15% each). In landraces, the most frequent allele was Pinb-D1a (over 70%), followed by Pinb-D1b (21% frequency). Pinb-D1c and Pinb-D1g were found in individual varieties. SKCS (single-kernel characterization system) analysis revealed that grain hardness was strictly connected with Pinb gene allelic variation in most tested cultivars. The mean grain hardness values were significantly greater in cultivars with mutant Pinb variants as compared to those with the wild-type Pinb-D1a allele. Based on grain hardness measured by SKCS, we classified the analyzed cultivars and lines into different classes according to a previously proposed classification system.


Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2578-2584 ◽  
Author(s):  
K Cohen-Solal ◽  
JL Villeval ◽  
M Titeux ◽  
S Lok ◽  
W Vainchenker ◽  
...  

Mpl ligand (thrombopoietin [TPO]) is the physiological regulator of platelet production. In mice, mRNA encoding the Mpl ligand (Mpl-L) is predominantly found by Northern blot analysis in the liver and kidney. To investigate the mode of regulation of the Mpl-L gene, we have developed several experimental models of severe thrombocytopenia differing in their kinetics and an opposite model of chronic thrombocytosis. Northern analysis performed at various times after induction of a thrombocytopenic state demonstrates that, whatever the number of circulating platelets, no change in Mpl-L mRNA level occurs in liver and kidney. By ribonuclease protection assays, we analyzed the ratios between mRNAs coding for the wild-type Mpl-L form and various splice variants encoding inactive or nonsecreted Mpl-L proteins. No modification in levels of these various isoforms was detected confirming the data of a previous report. Because the highest level of Mpl-L bioactivity in sera was observed only in mice with drastically reduced numbers of both platelets and megakaryocytes, these results further suggest that not only platelets, but also megakaryocytes, must be involved in the regulation of the level of circulating Mpl-L. In addition, we show that no downregulation of wild-type Mpl-L mRNA and no change in the ratio of Mpl-L mRNA isoforms were detected in mice in which a chronic thrombocytosis was induced. Together, these different models extend and further confirm that the regulation of Mpl-L does not occur at a transcriptional level or by a modulation in the ratios of Mpl-L mRNA isoforms.


2004 ◽  
Vol 186 (12) ◽  
pp. 3882-3888 ◽  
Author(s):  
Hui-Yi Hsiao ◽  
Qingfang He ◽  
Lorraine G. van Waasbergen ◽  
Arthur R. Grossman

ABSTRACT We have deleted a gene for a sensor histidine kinase, dspA (or hik33), in the cyanobacterium Synechocystis sp. strain PCC6803. In low and moderate light, the mutant grew slowly under photoautotrophic conditions, with a doubling time of ∼40 h, and had severely reduced photosynthetic oxygen evolution. When the mutant was maintained in low or moderate light in the presence of glucose, its growth rate was only somewhat lower than that of wild-type cells. However, the mutant was light sensitive and rapidly died in high light. Furthermore, levels of many transcripts encoding genes associated with photosynthesis were altered in the mutant relative to wild-type Synechocystis sp. strain PCC6803 both in low light and following exposure to high light. There was constitutive expression of several high-light-inducible genes, including hli, psbAIII, and gpx2; there was little increased accumulation of sodB mRNA in high light; and the cells failed to accumulate cpcBA and psaAB mRNAs in low light in the presence of glucose, although a normal decline in the levels of these mRNAs was observed during exposure to high light. These results suggest that DspA is involved in controlling sets of photosynthetic and high-light-responsive genes, either directly or indirectly. These and other results, some of which are presented in a companion paper (C.-J. Tu, J. Shrager, R. Burnap, B. L. Postier, and A. R. Grossman, J. Bacteriol. 186:3889-3902, 2004), suggest that DspA acts as a global regulator that helps coordinate cellular metabolism with growth limitations imposed by environmental conditions.


2002 ◽  
Vol 184 (12) ◽  
pp. 3214-3223 ◽  
Author(s):  
Sophie Bleves ◽  
Marie-Noëlle Marenne ◽  
Gautier Detry ◽  
Guy R. Cornelis

ABSTRACT The Yop virulon enables extracellularly located Yersinia, in close contact with a eukaryotic target cell, to inject bacterial toxic proteins directly into the cytosol of this cell. Several Ysc proteins, forming the Yop secretion apparatus, display homology with proteins of the flagellar basal body. To determine whether this relationship could extend to the regulatory pathways, we analyzed the influence of flhDC, the master regulatory operon of the flagellum, on the yop regulon. In an flhDC mutant, the yop regulon was up-regulated. The transcription of virF and the steady-state level of the transcriptional activator VirF were enhanced. yop transcription was increased at 37°C and could also be detected at a low temperature. Yop secretion was increased at 37°C and occurred even at a low temperature. The Ysc secretion machinery was thus functional at room temperature in the absence of flagella, implying that in wild-type bacteria, FlhD and/or FlhC, or the product of a gene downstream of flhDC, represses the yop regulon. In agreement with this notion, increased expression of flhDC in wild-type bacteria resulted in the oversecretion of flagellins at room temperature and in decreased Yop secretion at 37°C.


1998 ◽  
Vol 141 (7) ◽  
pp. 1529-1537 ◽  
Author(s):  
Barbara Peracino ◽  
Jane Borleis ◽  
Tian Jin ◽  
Monika Westphal ◽  
Jean-Marc Schwartz ◽  
...  

Chemotaxis and phagocytosis are basically similar in cells of the immune system and in Dictyostelium amebae. Deletion of the unique G protein β subunit in D. discoideum impaired phagocytosis but had little effect on fluid-phase endocytosis, cytokinesis, or random motility. Constitutive expression of wild-type β subunit restored phagocytosis and normal development. Chemoattractants released by cells or bacteria trigger typical transient actin polymerization responses in wild-type cells. In β subunit–null cells, and in a series of β subunit point mutants, these responses were impaired to a degree that correlated with the defect in phagocytosis. Image analysis of green fluorescent protein–actin transfected cells showed that β subunit– null cells were defective in reshaping the actin network into a phagocytic cup, and eventually a phagosome, in response to particle attachment. Our results indicate that signaling through heterotrimeric G proteins is required for regulating the actin cytoskeleton during phagocytic uptake, as previously shown for chemotaxis. Inhibitors of phospholipase C and intracellular Ca2+ mobilization inhibited phagocytosis, suggesting the possible involvement of these effectors in the process.


Sign in / Sign up

Export Citation Format

Share Document