scholarly journals Control of Photosynthetic and High-Light-Responsive Genes by the Histidine Kinase DspA: Negative and Positive Regulation and Interactions between Signal Transduction Pathways

2004 ◽  
Vol 186 (12) ◽  
pp. 3882-3888 ◽  
Author(s):  
Hui-Yi Hsiao ◽  
Qingfang He ◽  
Lorraine G. van Waasbergen ◽  
Arthur R. Grossman

ABSTRACT We have deleted a gene for a sensor histidine kinase, dspA (or hik33), in the cyanobacterium Synechocystis sp. strain PCC6803. In low and moderate light, the mutant grew slowly under photoautotrophic conditions, with a doubling time of ∼40 h, and had severely reduced photosynthetic oxygen evolution. When the mutant was maintained in low or moderate light in the presence of glucose, its growth rate was only somewhat lower than that of wild-type cells. However, the mutant was light sensitive and rapidly died in high light. Furthermore, levels of many transcripts encoding genes associated with photosynthesis were altered in the mutant relative to wild-type Synechocystis sp. strain PCC6803 both in low light and following exposure to high light. There was constitutive expression of several high-light-inducible genes, including hli, psbAIII, and gpx2; there was little increased accumulation of sodB mRNA in high light; and the cells failed to accumulate cpcBA and psaAB mRNAs in low light in the presence of glucose, although a normal decline in the levels of these mRNAs was observed during exposure to high light. These results suggest that DspA is involved in controlling sets of photosynthetic and high-light-responsive genes, either directly or indirectly. These and other results, some of which are presented in a companion paper (C.-J. Tu, J. Shrager, R. Burnap, B. L. Postier, and A. R. Grossman, J. Bacteriol. 186:3889-3902, 2004), suggest that DspA acts as a global regulator that helps coordinate cellular metabolism with growth limitations imposed by environmental conditions.

2020 ◽  
Author(s):  
Azeez Beebo ◽  
Ahmad Zia ◽  
Christopher R. Kinzel ◽  
Andrei Herdean ◽  
Karim Bouhidel ◽  
...  

SUMMARYPhotosynthetic oxygen evolution by photosystem II requires water supply into the chloroplast to reach the thylakoid lumen. A rapid water flow is also required into the chloroplast for optimal oxygen evolution and to overcome osmotic stress. The mechanisms governing water transport in chloroplasts are largely unexplored. Previous proteomics indicated the presence of three aquaporins from the tonoplast intrinsic protein (TIP) family, TIP1;1, TIP1;2 and TIP2;1, in chloroplast membranes of Arabidopsis thaliana. Here we revisited their location and studied their role in chloroplasts. Localization experiments indicated that TIP2;1 resides in the thylakoid, whereas TIP1;2 is present in both thylakoid and envelope membranes. Mutants lacking TIP1;2 and/or TIP2;1 did not display a macroscopic phenotype when grown under standard conditions. The mutant chloroplasts and thylakoids underwent less volume changes than the corresponding wild type preparations upon osmotic treatment and in the light. Significantly reduced rates of photosynthetic electron transport were obtained in the mutant leaves, with implications on the CO2 fixation rates. However, electron transport rates did not significantly differ between mutants and wild type when isolated thylakoids were examined. Less acidification of the thylakoid lumen was measured in mutants thylakoids, resulting in a slower induction of delta pH-dependent photoprotective mechanisms. These results identify TIP1;2 and TIP2;1 as chloroplast proteins and highlight their importance for osmoregulation and optimal photosynthesis. A third aquaporin, TIP1;1, is present in the chloroplast envelope, and may play role in photosynthesis under excessive light conditions, as based on the weak photosynthetic phenotype of its mutant.


2003 ◽  
Vol 30 (5) ◽  
pp. 515 ◽  
Author(s):  
Katya Georgieva ◽  
Ivanka Fedina ◽  
Liliana Maslenkova ◽  
Violeta Peeva

Barley plants (Hordeum vulgare L.) of wild type and two chlorina mutants, chlorina 126 and chlorina f2, were subjected to 42°C for 5 h at light intensities of 100 and 1000 μmol photons m–2 s–1. The exposure of plants to heat stress at a light intensity of 100 μmol m–2 s–1 induced enormous proline accumulation, indicating that the effect of heat stress was stronger when it was combined with low light intensity. The functional activity of PSII, O2�evolution and flash-induced thermoluminescence B-band amplitude were strongly reduced when plants were exposed to heat at low light intensity. The results clearly showed that high light intensity had a protective effect on photosynthetic activity when barley plants were treated with high temperature. Comparison of the thermosensitivity of wild type plants and chlorina mutants revealed that O2 evolution in chlorina 126 and, especially, in chlorina f2 was more sensitive to heat than in wild type.


2010 ◽  
Vol 149 (1) ◽  
pp. 95-101 ◽  
Author(s):  
P. BIHANI ◽  
B. CHAR ◽  
S. BHARGAVA

SUMMARYPlant-specific transcription factors belonging to the dehydration response element binding (DREB)/C-repeat binding factor (CBF) subfamily of the AP2/EREBP family specifically interact with dehydration-responsive elements (DRE)/C-repeat (CRT) and control the expression of many stress-inducible genes in plants. Two major subgroups of DREB proteins are represented by DREB1 and DREB2, which are induced specifically under cold and drought/salt stress, respectively. A DREB2 transcription factor gene from sorghum, SbDREB2 was identified and cloned in binary vectors, such that it was driven either by a constitutive CaMV35S promoter or a stress-inducible rd29A promoter. These gene constructs were transferred into rice through Agrobacterium tumefaciens-mediated transformation. Expression patterns of the native DREB gene (OsDREB2) and the transgene (SbDREB2) were similar. Both genes showed induction at 1 h exposure to drought, after which expression gradually dropped to basal levels by 24 h. Constitutive expression of SbDREB2 led to pleiotropic effects in rice and these transgenics did not set seed. The rd29A: SbDREB2 rice plants set seed and the grains collected from primary transformants were sown to raise T1 plants. The drought-stressed rd29A: SbDREB2 transgenics showed a significantly higher number of panicles as compared to the wild-type rice plants. Other phenological and agronomic traits were not affected in wild-type and rd29A: SbDREB2 transgenic rice.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9226
Author(s):  
Barbara Neuffer ◽  
Michael Schorsch ◽  
Steffen Hameister ◽  
Johannes Knuesting ◽  
Jennifer Selinski ◽  
...  

In the vineyards of Rhineland-Palatinate (Germany), two different types of Shepherd’s Purse (Capsella bursa-pastoris) coexist: (1) the common type called ‘wild type’, and (2) the decandric type called Capsella apetala or ‘Spe’ with four stamens in place of the four petals. In this study, we compare the anatomical and physiological characters of rosette leaves of the respective types. Progeny of individual plants was cultivated in growth chambers under low- and high-light conditions. Under low-light conditions, the stomata densities of the adaxial and abaxial epidermis did not differ between the two types. When grown under high-light conditions, wild type and Spe, both exhibited increased stomata densities compared to low-light conditions, but Spe to a lesser extent than the wild type. The maximal photosynthetic capacity of Spe was lower in both, low-light and high-light conditions compared to wild-type plants. Under all CO2 concentrations, Spe seemed to be less productive. The less effective CO2 assimilation of the Spe mutant C. apetala was accompanied by later flowering. This fact prolonged the vegetative phase of Spe by about two weeks and was sufficient for the maintenance of both populations stably over years.


2005 ◽  
Vol 280 (23) ◽  
pp. 22191-22197 ◽  
Author(s):  
Tamaki Fujimori ◽  
Yukako Hihara ◽  
Kintake Sonoike

To avoid the photodamage, cyanobacteria regulate the distribution of light energy absorbed by phycobilisome antenna either to photosystem II or to photosystem I (PSI) upon high light acclimation by the process so-called state transition. We found that an alternative PSI subunit, PsaK2 (sll0629 gene product), is involved in this process in the cyanobacterium Synechocystis sp. PCC 6803. An examination of the subunit composition of the purified PSI reaction center complexes revealed that PsaK2 subunit was absent in the PSI complexes under low light condition, but was incorporated into the complexes during acclimation to high light. The growth of the psaK2 mutant on solid medium was inhibited under high light condition. We determined the photosynthetic characteristics of the wild type strain and the two mutants, the psaK1 (ssr0390) mutant and the psaK2 mutant, using pulse amplitude modulation fluorometer. Non-photochemical quenching, which reflects the energy transfer from phycobilisome to PSI in cyanobacteria, was higher in high light grown cells than in low light grown cells, both in the wild type and the psaK1 mutant. However, this change of non-photochemical quenching during acclimation to high light was not observed in the psaK2 mutant. Thus, PsaK2 subunit is involved in the energy transfer from phycobilisome to PSI under high light condition. The role of PsaK2 in state transition under high light condition was also confirmed by chlorophyll fluorescence emission spectra determined at 77 K. The results suggest that PsaK2-dependent state transition is essential for the growth of this cyanobacterium under high light condition.


1979 ◽  
Vol 34 (5-6) ◽  
pp. 414-418 ◽  
Author(s):  
Georg H. Schmid ◽  
Pierre Thibault

Abstract A fast oxygen uptake, induced by a sequence of short (5 µsec) saturating flashes was observed in chloroplasts of wild type tobacco and two chlorophyll-deficient tobacco mutants. One of the chlorophyll mutants is the earlier described variegated tobacco NC 95. Chloroplasts of this mutant exhibit only photosystem I mediated photoreactions, hence the observed oxygen uptake is to be associated with photosystem I. This is further substantiated by the fact that the oxygen uptake is insensitive to DCMU in the two chloroplast types used, which have both photosystems fully functioning. The uptake depends on the addition of electron acceptors like p-benzoquinone in intact chloroplasts or on p-benzoquinone or ferricyanide in chloroplasts that have lost the envelope. In dark adapted chloroplasts, therefore, under these conditions the overall apparent gas exchange in the first two flashes is consumption. Although the uptake is slower than photosynthetic oxygen evolution it clearly affects the oxygen yield in the flash sequences. This is demonstrated by several experiments in which the apparent oxygen consumption in the absence of DCMU oscillates with a periodicity of four. We have indications that in chloroplasts of the tobacco aurea mutant Su/su the oxygen uptake is faster than in wild type chloroplasts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui-Qing Li ◽  
Meng Jiang ◽  
Jian-Zhong Huang ◽  
Ian Max Møller ◽  
Qing-Yao Shu

The Genomes Uncoupled 4 (GUN4) is one of the retrograde signaling genes in Arabidopsis and its orthologs have been identified in oxygenic phototrophic organisms from cyanobacterium to higher plants. GUN4 is involved in tetrapyrrole biosynthesis and its mutation often causes chlorophyll-deficient phenotypes with increased levels of reactive oxygen species (ROS), hence it has been speculated that GUN4 may also play a role in photoprotection. However, the biological mechanism leading to the increased ROS accumulation in gun4 mutants remains largely unknown. In our previous studies, we generated an epi-mutant allele of OsGUN4 (gun4epi), which downregulated its expression to ∼0.5% that of its wild-type (WT), and a complete knockout allele gun4-1 due to abolishment of its translation start site. In the present study, three types of F2 plant derived from a gun4-1/gun4epi cross, i.e., gun4-1/gun4-1, gun4-1/gun4epi and gun4epi/gun4epi were developed and used for further investigation by growing them under photoperiodic condition (16 h/8 h light/dark) with low light (LL, 100 μmol photons m–2 s–1) or high light (HL, 1000 μmol photons m–2 s–1). The expression of OsGUN4 was light responsive and had two peaks in the daytime. gun4-1/gun4-1-F2 seeds showed defective germination and died within 7 days. Significantly higher levels of ROS accumulated in all types of OsGUN4 mutants than in WT plants under both the LL and HL conditions. A comparative RNA-seq analysis of WT variety LTB and its gun4epi mutant HYB led to the identification of eight peroxidase (PRX)-encoding genes that were significantly downregulated in HYB. The transcription of these eight PRX genes was restored in transgenic HYB protoplasts overexpressing OsGUN4, while their expression was repressed in LTB protoplasts transformed with an OsGUN4 silencing vector. We conclude that OsGUN4 is indispensable for rice, its expression is light- and oxidative-stress responsive, and it plays a role in ROS accumulation via its involvement in the transcriptional regulation of PRX genes.


2004 ◽  
Vol 186 (12) ◽  
pp. 3889-3902 ◽  
Author(s):  
Chao-Jung Tu ◽  
Jeffrey Shrager ◽  
Robert L. Burnap ◽  
Bradley L. Postier ◽  
Arthur R. Grossman

ABSTRACT A sensor histidine kinase of Synechococcus sp. strain PCC7942, designated nblS, was previously identified and shown to be critical for the acclimation of cells to high-light and nutrient limitation conditions and to influence the expression of a number of light-responsive genes. The nblS orthologue in Synechocystis sp. strain PCC6803 is designated dspA (also called hik33). We have generated a dspA null mutant and analyzed global gene expression in both the mutant and wild-type strains under high- and low-light conditions. The mutant is aberrant for the expression of many genes encoding proteins critical for photosynthesis, phosphate and carbon acquisition, and the amelioration of stress conditions. Furthermore, transcripts from a number of genes normally detected only during exposure of wild-type cells to high-light conditions become partially constitutive in the low-light-grown dspA mutant. Other genes for which transcripts decline upon exposure of wild-type cells to high light are already lower in the mutant during growth in low light. These results suggest that DspA may influence gene expression in both a positive and a negative manner and that the dspA mutant behaves as if it were experiencing stress conditions (e.g., high-light exposure) even when maintained at near-optimal growth conditions for wild-type cells. This is discussed with respect to the importance of DspA for regulating the responses of the cell to environmental cues.


2007 ◽  
Vol 20 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Kanaan A. Galindo-Lagunas ◽  
Ziqiang Guan ◽  
Pablo Vinuesa ◽  
Sally Robinson ◽  
...  

Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed lpiA, have been identified in the gram-negative α-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


Sign in / Sign up

Export Citation Format

Share Document