Lava dome morphology inferred from numerical modelling

2020 ◽  
Vol 223 (3) ◽  
pp. 1597-1609
Author(s):  
Igor Tsepelev ◽  
Alik Ismail-Zadeh ◽  
Oleg Melnik

SUMMARY Lava domes form when highly viscous magmas erupt on the surface. Several types of lava dome morphology can be distinguished depending on the flow rate and the rheology of magma. Here, we develop a 2-D axisymmetric model of magma extrusion on the surface and lava dome evolution and analyse the dome morphology using a finite-volume method implemented in Ansys Fluent software. The magma/lava viscosity depends on the volume fraction of crystals and temperature. We show that the morphology of domes is influenced by two parameters: the characteristic time of crystal content growth (CCGT) and the discharge rate (DR). At smaller values of the CCGTs, that is, at rapid lava crystallization, obelisk-shaped structures develop at low DRs and pancake-shaped structures at high DRs; at longer CCGTs, lava domes feature lobe- to pancake-shaped structures. A thick carapace of about 70 per cent crystal content evolves at smaller CCGTs. We demonstrate that cooling does not play the essential role during a lava dome emplacement, because the thermal thickness of the evolving carapace remains small in comparison with the dome's height. A transition from the endogenic to exogenic regime of the lava dome growth occurs after a rapid increase in the DR. A strain-rate-dependent lava viscosity leads to a more confined dome, but the influence of this viscosity on the dome morphology is not well pronounced. The model results can be used in assessments of the rates of magma extrusion, the lava viscosity and the morphology of active lava domes..

2021 ◽  
Vol 15 (3) ◽  
pp. 159-168
Author(s):  
Yu. V. Starodubtseva ◽  
I. S. Starodubtsev ◽  
A. T. Ismail-Zadeh ◽  
I. A. Tsepelev ◽  
O. E. Melnik ◽  
...  

Abstract Lava domes form when a highly viscous magma erupts on the surface. Several types of lava dome morphology can be distinguished depending on the flow rate and the rheology of magma: obelisks, lava lobes, and endogenic structures. The viscosity of magma nonlinearly depends on the volume fraction of crystals and temperature. Here we present an approach to magma viscosity estimation based on a comparison of observed and simulated morphological forms of lava domes. We consider a two-dimensional axisymmetric model of magma extrusion on the surface and lava dome evolution, and assume that the lava viscosity depends only on the volume fraction of crystals. The crystallization is associated with a growth of the liquidus temperature due to the volatile loss from the magma, and it is determined by the characteristic time of crystal content growth (CCGT) and the discharge rate. Lava domes are modeled using a finite-volume method implemented in Ansys Fluent software for various CCGTs and volcanic vent sizes. For a selected eruption duration a set of morphological shapes of domes (shapes of the interface between lava dome and air) is obtained. Lava dome shapes modeled this way are compared with the observed shape of the lava dome (synthesized in the study by a random modification of one of the calculated shapes). To estimate magma viscosity, the deviation between the observed dome shape and the simulated dome shapes is assessed by three functionals: the symmetric difference, the peak signal-to-noise ratio, and the structural similarity index measure. These functionals are often used in the computer vision and in image processing. Although each functional allows to determine the best fit between the modeled and observed shapes of lava dome, the functional based on the structural similarity index measure performs it better. The viscosity of the observed dome can be then approximated by the viscosity of the modeled dome, which shape fits best the shape of the observed dome. This approach can be extended to three-dimensional case studies to restore the conditions of natural lava dome growth.


2021 ◽  
Vol 234 ◽  
pp. 00009
Author(s):  
Fida Zair ◽  
Mhamed Mouqallid ◽  
El houssine Chatri

Air pollution is considered one of the most important contemporary problems that threaten a person's life and environment. Among the major sources of air pollution are pollutants emitted from smokestacks. The objective of this work is to numerically study the dispersion of a pollutant ejected from a chimney into an air stream. The mass, momentum and energy conservation equations are solved using the finite volume method (MFV) and numerical simulations are performed using Ansys Fluent CFD software. Two case studies were discussed: The first case study is to study the influence of the direction of the wind speed and in the last case study, the temperature evolution on the dispersion of the ejected plume particles. The study demonstrated the extent of the dispersion in relation to these two parameters. The results obtained confirm the need to improve filtering systems in order to reduce the risks attributed to discharges and to propose solutions to manage the effect of these discharges on the environmental population.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


2021 ◽  
pp. 25-30
Author(s):  
Евгений Евгеньевич Простов

В статье представлены результаты экспериментальных исследований истечения пропана в различных направлениях в закрытом помещении. Рассматривался случай, когда источник истечения находился в багажнике автомобиля - имитация нахождения автомобиля с газомоторным топливом на станции технического обслуживания. Целью эксперимента являлось изучение механизма пространственного распространения газа в закрытом помещении для валидации математических моделей, используемых в программном комплексе ANSYS Fluent при моделировании поступления пропана в закрытое помещение. This scientific work describes a test conducted in a multidisciplinary test box on the testing training ground of the Orenburg branch of the All-Russian Research Institute for Fire Protection of EMERCOM of Russia. For the experiment there was built a room to simulate a service station (or parking box) for two cars. The frame was made of wooden bars and a plastic film was used to isolate the internal volume. The experimental installation consisted of a gas source with an internal diameter of 5 mm, located in the center of the room, and a system for gas supply and registration of experimental data from six gas analyzers SGOES-2 with a measurement range of pre-explosive concentrations from 0 to 100% of the lower concentration limit of flame propagation (NKPR) or a volume fraction from 0 to 1.7% with absolute ± 5% NKPR (in the range from 0 to 50% NKPR) and relative ± 10% NKPR (in the range from 50 to 100% NKPR) errors. In the center of the experimental room there was placed a car with the gas source in the trunk. All openings to the interior were insulated with plastic film and mounting foam. Natural cracks were left between the trunk lid and the body. The gas source is located in the trunk of the car and is directed towards the wide part of the trunk at an angle of 30 degrees relative to the floor (simulating the location of the gas cylinder used in cars). The gas analyzers were located along the wall, where the outflow is directed along the perimeter of the trunk, and one gas analyzer was located directly in the trunk behind the gas analyzer to control gas contamination. Propane has been released into the trunk with a constant flow rate of 2.8 m/h for 5 minutes. There were 8 test starts of the gas supply system (the flow vertically down), and then there were carried out 3 experiments per 3 series of tests in each. The purpose of the test was to study the mechanism of spatial gas propagation in an confined space for validation of mathematical models used in the ANSYS Fluent software package when modeling the propane intake into the confined space


Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification


Author(s):  
Obai Younis ◽  
Reem Ahmed ◽  
Ali Mohammed Hamdan ◽  
Dania Ahmed

This study aims to optimize the velocity of ring shape parameter for designing the nozzles using computational fluid dynamics (CFD) and investigated the flow in nozzles using ANSYS, Inc. simulation software. The model geometries were defined using ANSYS FLUENT-Design Modeler platform. All nozzles were designed on unstructured triangular elements comprising of 1200000 mesh nodes. The differential governing equations were applied in ANSYS FLUENT based on a finite volume method. The distance and dimensions of ring location significantly influence the velocity of water during flow where the maximum velocity at double rings reduces the surface area at distance of 7mm and 15mm and 2x2 mm dimensions. Considering 8, 10, and 12 bar liner proportions, there was an increase in the velocity at maximum points in ring shapes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yacine Khetib ◽  
Ammar Melaibari ◽  
Radi Alsulami

The present research benefits from the finite volume method in investigating the influence of combined turbulators on the thermal and hydraulic exergy of a parabolic solar collector with two-phase hybrid MWCNT-Cu/water nanofluid. All parabolic geometries are produced using DesignModeler software. Furthermore, FLUENT software, equipped with a SIMPLER algorithm, is applied for analyzing the performance of thermal and hydraulic, and exergy efficiency. The Eulerian–Eulerian multiphase model and k-ε were opted for simulating the two-phase hybrid MWCNT-Cu/water nanofluid and turbulence model in the collector. The research was analyzed in torsion ratios from 1 to 4, Re numbers from 6,000 to 18,000 (turbulent flow), and the nanofluid volume fraction of 3%. The numerical outcomes confirm that the heat transfer and lowest pressure drop are relevant to the Re number of 18,000, nanofluid volume fraction of 3%, and torsion ratio of 4. Furthermore, in all torsion ratios, rising Re numbers and volume fraction lead to more exergy efficiency. The maximum value of 26.32% in the exergy efficiency was obtained at a volume fraction of 3% and a torsion ratio of 3, as the Re number goes from 60,000 to 18,000.


Author(s):  
Feng Hong ◽  
Jianping Yuan ◽  
Banglun Zhou ◽  
Zhong Li

Compared to non-cavitating flow, cavitating flow is much complex owing to the numerical difficulties caused by cavity generation and collapse. In the present work, cavitating flow around a two-dimensional Clark-Y hydrofoil is studied numerically with particular emphasis on understanding the cavitation structures and the shedding dynamics. A cavitation model, coupled with the mixture multi-phase approach, and the modified shear stress transport k-ω turbulence model has been developed and implemented in this study to calculate the pressure, velocity, and vapor volume fraction of the hydrofoil. The cavitation model has been implemented in ANSYS FLUENT platform. The hydrofoil has a fixed angle of attack of α = 8° with a Reynolds number of Re = 7.5 × 105. Simulations have been carried out for various cavitation numbers ranging from non-cavitating flows to the cloud cavitation regime. In particular, we compared the lift and drag coefficients, the cavitation dynamics, and the time-averaged velocity with available experimental data. The comparisons between the numerical and experimental results show that the present numerical method is capable to predict the formation, breakup, shedding, and collapse of the sheet/cloud cavity. The periodical formation, shedding, and collapse of sheet/cloud cavity lead to substantial increase in turbulent velocity fluctuations in the cavitation regimes around the hydrofoil and in the wake flow.


2019 ◽  
Vol 392 ◽  
pp. 123-137 ◽  
Author(s):  
Mohamed A. Medebber ◽  
Abderrahmane Aissa ◽  
Mohamed El Amine Slimani ◽  
Noureddine Retiel

The two dimensional study of natural convection in vertical cylindrical annular enclosure filled with Cu-water nanofluid under magnetic fields is numerically analyzed. The vertical walls are maintained at different uniform hot and cold temperatures, THand TC, respectively. The top and bottom walls of the enclosure are thermally insulated. The governing equations are solved numerically by using a finite volume method. The coupling between the continuity and momentum equations is effected using the SIMPLER algorithm. Numerical analysis has been carried out for a wide range of Rayleigh number (103≤Ra≤106), Hartmann number (1 ≤Ha≤100) and nanoparticles volume fraction (0 ≤φ≤0.08). The influence of theses physical parameters on the streamlines, isotherms and average Nusselt has been numerically investigated.


2020 ◽  
Vol 307 ◽  
pp. 01010 ◽  
Author(s):  
Ahlem Boudiaf ◽  
Fetta Danane ◽  
Youb Khaled Benkahla ◽  
Walid Berabou ◽  
Mahdi Benzema ◽  
...  

This paper presents the numerical predictions of hydrodynamic and thermal characteristics of nanofluid flow through backward facing step. The governing equations are solved through the finite volume method, as described by Patankar, by taking into account the associated boundary conditions. Empirical relations were used to give the effective dynamic viscosity and the thermal conductivity of the nanofluid. Effects of different key parameters such as Reynolds number, nanoparticle solid volume fraction and nanoparticle solid diameter on the heat transfer and fluid flow are investigated. The results are discussed in terms of the average Nusselt number and streamlines.


Sign in / Sign up

Export Citation Format

Share Document