scholarly journals Research on optimization strategy of grid frequency modulation based on doubly-fed wind turbines

Author(s):  
Chao Wang ◽  
Jianyuan Xu ◽  
Liang Wang ◽  
Dan Song

Abstract The increasing global energy and environmental problems are encouraging to the development and utilization of renewable and clean energy in various countries. Wind power is one of the major source in large-scale renewable energy applications. However, the frequency regulation becomes a critical issue while the technology is spreading. Research on the frequency modulation (FM) technology of wind turbines and its control strategy for future power grids become significant. The paper proposes a novel coordinated frequency control strategy with the synchronous generator to solve the unmatched state between the output power of the doubly-fed wind turbines (doubly-fed induction generators) and the grid frequency, combined with the frequency response characteristics of the synchronous generator. The FM coordination strategy is formulated by the modulation coefficient from current wind speed and operation mode of each wind turbine. By coordinating the FM output of the doubly-fed wind turbine and the synchronous generator within the allowable range of frequency deviation, it will achieve the dual goal of reducing the frequency regulation pressure of the synchronous generator and indirectly reducing the abandoned wind volume of the wind turbine. The simulation is carried out on the MATLAB/SIMULINK platform. The results show that the presenting variable coefficient frequency modulation strategy could significant smooth the wind power fluctuation, and allow the reserve power of the doubly-fed wind turbine can fully engaged in frequency modulation which will reduces the frequency modulation pressure of the synchronous generator in the system.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.



2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.



2021 ◽  
pp. 0309524X2110606
Author(s):  
Mohamed Metwally Mahmoud ◽  
Mohamed M Aly ◽  
Hossam S Salama ◽  
Abdel-Moamen M Abdel-Rahim

In recent years, wind energy conversion systems (WECSs) have been growing rapidly. Due to various advantages, a permanent magnet synchronous generator (PMSG) is an appealing solution among different types of wind generators. As wind power penetration level in the grid increases, wind power impacts the grid and vice versa. The most essential concerns in the system are voltage sag and swell, and grid code compliance, particularly for low voltage ride-through (LVRT) and high voltage ride-through (HVRT) capability, is a pressing necessity. This paper presents a parallel capacitor (PC) control strategy to enhance the LVRT and HVRT capability of PMSG. Furthermore, this study presents a method for the sizing of a PC system for the reduction of the overvoltage of the DC-link during voltage sags and swell. Fast Fourier transform analysis is used to determine the total harmonic distortion (THD) for the injected current into the grid. The obtained results illustrate the effectiveness of the proposed system in keeping the DC-link voltage below the limit, power quality improvement, and increasing the LVRT and HVRT capability. Models of wind turbine, PMSG, and PC control system are built using MATLAB/SIMULINK software.



Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3396 ◽  
Author(s):  
Mingzhu Tang ◽  
Wei Chen ◽  
Qi Zhao ◽  
Huawei Wu ◽  
Wen Long ◽  
...  

Fault diagnosis and forecasting contribute significantly to the reduction of operating and maintenance associated costs, as well as to improve the resilience of wind turbine systems. Different from the existing fault diagnosis approaches using monitored vibration and acoustic data from the auxiliary equipment, this research presents a novel fault diagnosis and forecasting approach underpinned by a support vector regression model using data obtained by the supervisory control and data acquisition system (SCADA) of wind turbines (WT). To operate, the extraction of fault diagnosis features is conducted by measuring SCADA parameters. After that, confidence intervals are set up to guide the fault diagnosis implemented by the support vector regression (SVR) model. With the employment of confidence intervals as the performance indicators, an SVR-based fault detecting approach is then developed. Based on the WT SCADA data and the SVR model, a fault diagnosis strategy for large-scale doubly-fed wind turbine systems is investigated. A case study including a one-year monitoring SCADA data collected from a wind farm in Southern China is employed to validate the proposed methodology and demonstrate how it works. Results indicate that the proposed strategy can support the troubleshooting of wind turbine systems with high precision and effective response.



2011 ◽  
Vol 347-353 ◽  
pp. 2342-2346
Author(s):  
Rong Fu ◽  
Bao Yun Wang ◽  
Wan Peng Sun

With increasing installation capacity and wind farms penetration, wind power plays more important role in power systems, and the modeling of wind farms has become an interesting research topic. In this paper, a coherency-based equivalent model has been discussed for the doubly fed induction generator (DFIG). Firstly, the dynamic models of wind turbines, DFIG and the mechanisms are briefly introduced. Some existing dynamic equivalent methods such as equivalent wind model, variable speed wind turbine model, parameter identification method and modal equivalent method to be used in wind farm aggregation are discussed. Then, considering wind power fluctuations, a new equivalent model of a wind farm equipped with doubly-fed induction generators is proposed to represent the interactions of the wind farm and grid. The method proposed is based on aggregating the coherent group wind turbines into an equivalent one. Finally, the effectiveness of the equivalent model is demonstrated by comparison with the wind farm response obtained from the detailed model. The dynamic simulations show that the present model can greatly reduce the computation time and model complexity.



2019 ◽  
Vol 11 (15) ◽  
pp. 4241
Author(s):  
Mudan Li ◽  
Yinsong Wang

The traditional additional inertial control (T-AIC) strategy can provide frequency support for the directly-driven wind turbine with a permanent magnet synchronous generator (D-PMSG). However, due to the fixed control coefficients, the frequency modulation effect is poor under load and wind speed disturbances. In order to improve the frequency transient response of D-PMSG, a fuzzy adaptive additional inertial control strategy (FA-AIC) is proposed in this paper. A simplified D-PMSG model is established for the complexity and low calculation speed. A single-machine grid-connected system composed of a D-PMSG and an equivalent synchronous generator set (ESGS) is taken as the background and analysis of the principle of T-AIC. The proportional and derivative coefficient initial values in T-AIC are tuned by simulating the static characteristics and inertial response characteristics of the conventional synchronous generator set, and fuzzy control technology is introduced to adjust the proportional and derivative coefficients adaptively based on the frequency deviation and the frequency deviation change rate under load or wind speed disturbances. The simulation verification indicates that T-AIC, kinetic energy (KE)-based gain-AIC and FA-AIC all can utilize the D-PMSG additional inertial response to provide frequency support for grid-connected systems. Compared with T-AIC and KE-based gain-AIC, the proposed FA-AIC can not only provide more effective frequency support during load disturbances, but also suppress the frequency fluctuation caused by the wind speed variation and displays a better dynamic frequency regulation effect.





2013 ◽  
Vol 136 (2) ◽  
Author(s):  
JuChuan Dai ◽  
Deshun Liu ◽  
Yanping Hu ◽  
Xiangbing Shen

Emphasis of this article is on the dynamic characteristics analysis of individual pitch control for MW scale directly driven wind turbines with permanent magnet synchronous generator (PMSG). The pitch control objectives were analyzed and the objective expressions were deduced, including power expression, loads expression, and vibration expressions of blade and tower. Then, both the collective pitch control aiming at power control and the individual pitch control strategy aiming at joint power and loads control were analyzed, too. The blade root bending moments and the actual capture power of wind rotor were employed to be the control variables. The power was calculated based on the conventional measured parameters of wind turbines. In order to reflect the difference between the pitch angle command value and the actual value, the pitch actuator dynamic model was used. The research results show that both the collective pitch control strategy and the proposed individual pitch control strategy can effectively control the power injected into grid; moreover, the individual pitch control can reduce fatigue loads; while in the process of individual pitch control, the actual variation of blade pitch angle is closely related to not only the inflow speed but also the blade azimuth angle; individual pitch control strategy can reduce the variation amplitude of flapwise moments, but has little influence on the edgewise moments.



2014 ◽  
Vol 550 ◽  
pp. 166-171
Author(s):  
N. Manonmani

This paper deals about an effective control strategy for wind power plant to bring out additional transmission capacity and better means of maintaining system reliability when compared to already existing control techniques. The rotor power of Doubly Fed Induction Generator (DFIG) is the only controlling parameter taken to determine four current reference values using this single strategy. These references are fed to rotor side and grid side current controllers which enables torque, grid side real and reactive power, as well as pitch angle control resulting in more prominent solution. This control strategy therefore relieves the need for switching between different controllers or reconfiguration of the hardware and it also provides automatic voltage and frequency regulation for network. The effectiveness and robustness of the proposed control strategy is studied through simulation carried out on detailed switched model of the system in the PSCAD/EMTDC version 4.2 software environment.



Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5354
Author(s):  
Changqing Chen ◽  
Xinran Li

This paper proposes a Configuration method for energy storage (ES), in which the ES inertia of ES is equal to an equal capacity synchronous generator. The purpose is to enhance the frequency modulation capability of double-fed induction generator (DFIG) and wind power consumption. Through the proposed method, the system inertia can remain unchanged after the DFIGs replacing the conventional turbines. During the DFIG rotor speed recovery, the ES releases energy to compensate for sudden changes in active power. On this basis, the DFIG and ES structure model is created, and the ES control strategy is optimized, thereby effectively improving the DFIG frequency modulation capability. Besides, in the non-frequency modulation period, the ES is used to suppress wind power fluctuations, thereby improving system wind power consumption and ES utilization. Simulation results indicate, in the ES-embedded wind turbine structure model, the combination of the ES Configuration method and multi-functional strategy significantly improves the frequency modulation ability and anti-interference performance of a single DFIG. Moreover, the wind power consumption and ES utilization are improved, and the ES achieves additional value.



Sign in / Sign up

Export Citation Format

Share Document