scholarly journals A High-Throughput Assay for Circulating Antibodies Directed Against the S Protein of Severe Acute Respiratory Syndrome Coronavirus 2

2020 ◽  
Vol 222 (10) ◽  
pp. 1629-1634 ◽  
Author(s):  
Svenja Weiss ◽  
Jéromine Klingler ◽  
Catarina Hioe ◽  
Fatima Amanat ◽  
Ian Baine ◽  
...  

Abstract More than 24 million infections with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were confirmed globally by September 2020. While polymerase chain reaction–based assays are used for diagnosis, there is a need for high-throughput, rapid serologic methods. A Luminex binding assay was developed and used to assess simultaneously the presence of coronavirus disease 2019 (COVID-19)–specific antibodies in human serum and plasma. Clear differentiation was achieved between specimens from infected and uninfected subjects, and a wide range of serum/plasma antibody levels was delineated in infected subjects. All 25 specimens from 18 patients with COVID-19 were positive in the assays with both the trimeric spike and the receptor-binding domain proteins. None of the 13 specimens from uninfected subjects displayed antibodies to either antigen. There was a highly statistically significant difference between the antibody levels of COVID-19–infected and –uninfected specimens (P < .0001). This high-throughput antibody assay is accurate, requires only 2.5 hours, and uses 5 ng of antigen per test.

Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 64
Author(s):  
Shanelle A. Kohler ◽  
Matthew O. Parker ◽  
Alex T. Ford

Animal behaviour is becoming increasingly popular as an endpoint in ecotoxicology due to its increased sensitivity and speed compared to traditional endpoints. However, the widespread use of animal behaviours in environmental risk assessment is currently hindered by a lack of optimisation and standardisation of behavioural assays for model species. In this study, assays to assess swimming speed were developed for a model crustacean species, the brine shrimp Artemia franciscana. Preliminary works were performed to determine optimal arena size for this species, and weather lux used in the experiments had an impact on the animals phototactic response. Swimming speed was significantly lower in the smallest arena, whilst no difference was observed between the two larger arenas, suggesting that the small arena was limiting swimming ability. No significant difference was observed in attraction to light between high and low light intensities. Arena size had a significant impact on phototaxis behaviours. Large arenas resulted in animals spending more time in the light side of the arena compared to medium and small, irrespective of light intensity. The swimming speed assay was then used to expose specimens to a range of psychotropic compounds with varying modes of action. Results indicate that swimming speed provides a valid measure of the impacts of behaviour modulating compounds on A. franciscana. The psychotropic compounds tested varied in their impacts on animal behaviour. Fluoxetine resulted in increased swimming speed as has been found in other crustacean species, whilst oxazepam, venlafaxine and amitriptyline had no significant impacts on the behaviours measured. The results from this study suggest a simple, fast, high throughput assay for A. franciscana and gains insight on the impacts of a range of psychotropic compounds on the swimming behaviours of a model crustacean species used in ecotoxicology studies.


2021 ◽  
Author(s):  
Katja Hellendahl ◽  
Maryke Fehlau ◽  
Sebastian Hans ◽  
Peter Neubauer ◽  
Anke Kurreck

Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and the production of nucleotide analogues in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening assay for NKs is of great importance. Here, we report the validation of a well-known luciferase-based assay for the detection of NK activity in 96-well plate format. The assay was semi-automated using a liquid handling robot. A good linearity was demonstrated (r² >0.98) in the range of 0 to 500 µM ATP, and it was shown that also alternative phosphate donors like dATP or CTP were accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplary used for the comparison of the substrate spectra of four nucleoside kinases using 20 (8 natural and 12 modified) substrates. The screening results correlated well with literature data and, additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.


Author(s):  
Hannah Wang ◽  
Catherine A Hogan ◽  
Michelle Verghese ◽  
Daniel Solis ◽  
Mamdouh Sibai ◽  
...  

Abstract An ultra-sensitive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen assay (S-PLEX, MesoScale Diagnostics) was evaluated in 250 retrospective and 200 prospective upper respiratory specimens. In samples with cycle threshold <35, there was 95%–98% positive and 93%–96% negative percent agreement with reverse transcription-polymerase chain reaction. S-PLEX may provide a high-throughput alternative to nucleic acid-based testing for coronavirus disease 2019 (COVID-19) diagnosis.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1211
Author(s):  
Khashayar Bajgiran ◽  
Alejandro Cordova ◽  
Riad Elkhanoufi ◽  
James Dorman ◽  
Adam Melvin

Droplet microfluidics offers a wide range of applications, including high-throughput drug screening and single-cell DNA amplification. However, these platforms are often limited to single-input conditions that prevent them from analyzing multiple input parameters (e.g., combined cellular treatments) in a single experiment. Droplet multiplexing will result in higher overall throughput, lowering cost of fabrication, and cutting down the hands-on time in number of applications such as single-cell analysis. Additionally, while lab-on-a-chip fabrication costs have decreased in recent years, the syringe pumps required for generating droplets of uniform shape and size remain cost-prohibitive for researchers interested in utilizing droplet microfluidics. This work investigates the potential of simultaneously generating droplets from a series of three in-line T-junctions utilizing gravity-driven flow to produce consistent, well-defined droplets. Implementing reservoirs with equal heights produced inconsistent flow rates that increased as a function of the distance between the aqueous inlets and the oil inlet. Optimizing the three reservoir heights identified that taller reservoirs were needed for aqueous inlets closer to the oil inlet. Studying the relationship between the ratio of oil-to-water flow rates () found that increasing resulted in smaller droplets and an enhanced droplet generation rate. An ANOVA was performed on droplet diameter to confirm no significant difference in droplet size from the three different aqueous inlets. The work described here offers an alternative approach to multiplexed droplet microfluidic devices allowing for the high-throughput interrogation of three sample conditions in a single device. It also has provided an alternative method to induce droplet formation that does not require multiple syringe pumps.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3748-3748
Author(s):  
Pamela S. Becker ◽  
Vivian Oehler ◽  
Elihu H. Estey ◽  
Timothy Martins ◽  
Andrea Perdue ◽  
...  

Abstract Introduction. Resistance to therapy, rather than treatment-related mortality, is the usual cause of failure to cure AML. Typically all patients receive the same therapy despite great inter-patient variation in the mutations that underlie the disease. Thus an individualized approach to therapy might be more productive. To this end, we developed a high-throughput sensitivity assay for 160 drugs; 45 are FDA approved and 115 investigational, encompassing a wide range of targets and mechanisms of action. We previously validated the assay in 30 primary patient blast samples and 14 acute leukemia cell lines. Here we report a clinical trial (NCT01872819 at clinicaltrials.gov) utilizing this assay to select drugs for patients with refractory AML. Method. The primary objectives were to obtain assay results within 10 days and initiate treatment within 21 days. The secondary objective was to achieve a response (cytoreduction or at least partial response) greater that that expected for comparable refractory populations with other therapies. Mononuclear cells from marrow or peripheral blood were obtained by density centrifugation and enriched for blasts using magnetic bead separation if the initial sample contained < 80% blasts. Cells were incubated in coated 384 well plates overnight, then drugs were added at 8 concentrations spanning 4 log orders of magnitude, in duplicate. After 4 days, live cells were detected with CellTiter-Glo® (Promega). XLfit (idbs) was used to plot survival curves (4 parameter logistic dose fit) and to calculate EC50s. Individual drugs were chosen on the basis of EC50 and drug availability, and patients received the single agents at the accepted maximal tolerated dose. Results. Fifteen patients were enrolled. Ten had unfavorable cytogenetics, and 3 had the Flt3ITD and 1 the Flt3D835 mutation. Eight patients had antecedent hematologic disorder. They had received an average of 5 prior therapies (range 3-6). The average time from sample procurement to assay result was 5.1 days (range 4-8). Within an average of 11.6 (median 9, range 4-28) days, 13 patients received single drugs to which their cells appeared to be sensitive with an EC50 range of 0.026 - 0.175 μmol/L , including cladribine, mitoxantrone, bortezomib, or vinblastine. For the patient with the Flt3ITD mutation, the blasts exhibited sensitivity to 6 Flt3 inhibitors in the high throughput assay. Although only FDA approved drugs were able to be procured, as the pharmaceutical companies denied requests for individual patient use, most patients received a drug they had not previously received. All patients exhibited a decline in blast number after receipt of the indicated drug, on average, by 92.6% (range 80.5-99.8%). Toxicity was as expected if the patients had received standard investigational protocols for relapsed/refractory AML. Median overall survival was 88 (range 7-276) days from start of treatment. For one patient without circulating blasts, the marrow blast percent declined from 27% by flow to 0% at day 15 and also 0% at day 51. 6 of 9 evaluable participants exhibited a reduction in bone marrow blasts by flow cytometry on a day 14-21 marrow. There were also 2 patients whose day 14-21 marrows were severely hypocellular. Moreover, 1 patient achieved CR, and 2 patients, CRp, that occurred after additional cycles of combination chemotherapy regimens for 2 of the 3 patients, that included drugs identified by the high throughput assay. Conclusion. In vitro high throughput testing to guide individual treatment choice is feasible and warrants further evaluation in larger clinical trials, with panels that include investigational drugs. Disclosures Off Label Use: Cladribine is indicated for the treatment of hairy cell leukemia. Vinblastine is indicated for the treatment of Hodgkin's disease and testicular cancer, and some other cancers. Bortezomib is indicated for the treatment of multiple myeloma and mantle cell lymphoma.


2020 ◽  
Vol 58 (8) ◽  
Author(s):  
Arryn R. Craney ◽  
Priya D. Velu ◽  
Michael J. Satlin ◽  
Kathy A. Fauntleroy ◽  
Katrina Callan ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the cause of a worldwide pandemic. Many commercial SARS-CoV-2 reverse transcription-PCR (RT-PCR) assays have received Emergency Use Authorization from the U.S. Food and Drug Administration. However, there are limited data describing their performance, in particular the performance of high-throughput SARS-CoV-2 RT-PCR systems. We analyzed the diagnostic performance of two high-throughput systems: cobas 6800 and Panther Fusion, and their associated RT-PCR assays, with a collection of 389 nasopharyngeal specimens. The overall agreement between the platforms was 96.4% (375/389). Cohen’s kappa analysis rated the strength of agreement between the two platforms as “almost perfect” (κ = 0.922; standard error, 0.051). Furthermore, there was no significant difference between corresponding cycle threshold values generated on the two systems (P value = 0.88; Student’s t test). Taken together, these data imply that the two platforms can be considered comparable in terms of their clinical performance. We believe that this information will be useful for those who have already adopted these platforms or are seeking to implement high-throughput RT-PCR testing to stem the SARS-CoV-2 pandemic.


Author(s):  
Benjamin H L Harris ◽  
Mohamed Zuhair ◽  
Matteo Di Giovannantonio ◽  
Carolina Rosadas ◽  
Maryam Khan ◽  
...  

Abstract At the start of the UK coronavirus disease 2019 epidemic, this rare point prevalence study revealed that one-third of patients (15 of 45) in a London inpatient rehabilitation unit were found to be infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but asymptomatic. We report on 8 patients in detail, including their clinical stability, the evolution of their nasopharyngeal viral reverse-transcription polymerase chain reaction (RT-PCR) burden, and their antibody levels over time, revealing the infection dynamics by RT-PCR and serology during the acute phase. Notably, a novel serological test for antibodies against the receptor binding domain of SARS-CoV-2 showed that 100% of our asymptomatic cohort remained seropositive 3—6 weeks after diagnosis.


Author(s):  
Daniel Levitan ◽  
Viktoriya London ◽  
Rodney A. McLaren ◽  
Justin David Mann ◽  
Ke Cheng ◽  
...  

Abstract Context.—Coronavirus disease 2019 (COVID-19) has been shown to have effects outside of the respiratory system. Placental pathology in the setting of maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains a topic of great interest as earlier studies have shown mixed results. Objective.—To ascertain whether maternal SARS-CoV-2 infection is associated with any specific placental histopathology, and to evaluate the virus's propensity for direct placental involvement. Design.—Placentas from 65 women with polymerase chain reaction-proven SARS-CoV-2 infection underwent histologic evaluation using Amsterdam consensus group criteria and terminology. Another 85 placentas from women without SARS-CoV-2 constituted the negative control group. Sixty-four of the placentas from the SARS-CoV-2-positive group underwent immunohistochemical staining for SARS-CoV-2 nucleocapsid protein. Results.—Pathologic findings were divided into maternal vascular malperfusion, fetal vascular malperfusion, chronic inflammatory lesions, amniotic fluid infection sequence, increased perivillous fibrin, intervillous thrombi, increased subchorionic fibrin, meconium-laden macrophages within fetal membranes, and chorangiosis. There was no statistically significant difference in prevalence of any specific placental histopathology between the SARS-CoV-2-positive and negative groups. There was no immunohistochemical evidence of SARS-CoV-2 virus in any of the 64 placentas that underwent staining for viral nucleocapsid protein. Conclusions.—Our study results and a literature review suggest that there is no characteristic histopathology in the majority of placentas from women with SARS-CoV-2 infection. Likewise, direct placental involvement by SARS-CoV-2 is a rare event.


2006 ◽  
Vol 11 (7) ◽  
pp. 816-821 ◽  
Author(s):  
E. Michael August ◽  
Lori Patnaude ◽  
Jerry Hopkins ◽  
Joey Studts ◽  
Elda Gautschi ◽  
...  

Histamine is a well-known mediator of allergic, inflammatory, and neurological responses. More recent studies suggest a role for histamine and its receptors in a wide range of biological processes, including T-cell maturation and bone remodeling. Histamine serum levels are regulated mainly by the activity of the histamine-synthesizing enzyme histidine decarboxylase (HDC). Despite the importance of this enzyme in many physiological processes, very few potent HDC inhibitors have been identified. HDC assays suitable for high-throughput screening have not been reported. The authors describe the development of a fluorescence polarization assay to measure HDC enzymatic activity. They used a fluorescein-histamine probe that binds with high affinity to an antihistamine antibody for detection. Importantly, they show that probe binding is fully competed by histamine, but no competition by the HDC substrate histidine was observed. The automated assay was performed in a total volume of 60 μL, had an assay window of 80 to 100 mP, and had a Z′ factor of 0.6 to 0.7. This assay provides new tools to study HDC activity and pharmacological modulation of histamine levels.


1994 ◽  
Vol 71 (01) ◽  
pp. 129-133 ◽  
Author(s):  
P J Declerck ◽  
S Vanderschueren ◽  
J Billiet ◽  
H Moreau ◽  
D Collen

SummaryStreptokinase (SK) is a routinely used thrombolytic agent but it is immunogenic and allergenic; staphylokinase (STA) is a potential alternative agent which is under early clinical evaluation. The comparative prevalence of antibodies against recombinant STA (STAR) and against SK was studied in healthy subjects and their induction with intravenous administration in small groups of patients.Enzyme-linked immunosorbent assays, using microtiter plates coated with STAR or SK and calibration with affinospecific human antibodies, revealed 2.1 to 65 μg/ml (median 11 μg/ml) anti-STAR antibodies and 0.9 to 370 μg/ml (median 18 μg/ml) anti-SK antibodies (p <0.001 vs anti-STAR antibodies) in plasma from 100 blood donors, with corresponding values of 0.6 to 100 μg/ml (median 7.1 μg/ml) and 0.4 to 120 μg/ml (median 7.3 μg/ml), respectively, in 104 patients with angina pectoris. Three out of 17 patients with Staphylococcus aureus bacteremia had significantly increased anti-STAR antibody levels (150, 75 and 75 μg/ml), and STAR neutralizing activities (2.2, 3.6 and 4.1 μg STAR neutralized per ml plasma, respectively). In 6 patients with acute myocardial infarction, given 10 mg STAR intravenously over 30 min, median anti-STAR antibody levels were 3.5 μg/ml at baseline, 2.9 μg/ml at 6 to 8 days and 1.2 μg/ml at 2 to 9 weeks, with median corresponding titers of STAR neutralizing activity at 2 to 9 weeks of 42 μg/ml plasma. Conversely, in 5 patients treated with 1,500,000 units SK over 60 min, median anti-SK antibodies increased from 2.9 μg/ml at baseline to 360 μg/ml at 5 to 10 days, with corresponding median SK neutralizing activities of 13 μg/ml. Antibodies against STAR did not cross-react with SK and vice versa.Plasma from human subjects contains low levels of circulating antibodies against recombinant staphylokinase, and intravenous administration of this compound boosts antibody titers. These antibodies do however not cross-react with streptokinase, whereby the use of these two immunogenic thrombolytic agents would not be mutually exclusive.


Sign in / Sign up

Export Citation Format

Share Document