scholarly journals 52 Alterations of fecal microbiome characteristics by dietary soy isoflavone ingestion in growing pigs infected with porcine reproductive and respiratory syndrome virus

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 30-31
Author(s):  
Brooke N Smith ◽  
Stephen A Fleming ◽  
Mei Wang ◽  
Ryan N Dilger

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically-important disease and ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and anti-viral properties. The objective of this study was to quantify long-term effects of ISF consumption on fecal microbiome characteristics under disease challenge. In total, 96 weaned barrows were group-housed in a BSL-2 containment facility and allotted to 1 of 3 experimental treatments that were maintained throughout the wean-to-finish study: non-infected pigs receiving an ISF-devoid control diet (NC, n=24), and infected pigs receiving either the control diet (PC, n=36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n=36) (Table 1). Following a 7-day adaptation, pigs were inoculated intranasally with either a sham-control (PBS) or live PRRSV (1×105 TCID50/mL, strain NADC20). Fecal samples were collected from 48 individual pigs at pre-infection (-2 days post-inoculation, DPI), peak-infection (10 DPI), and post-infection (144 DPI) time-points and extracted DNA was used for 16S bacterial rRNA sequencing. Differences in bacterial communities among diet groups were evaluated using UniFrac distance matrices (weighted and unweighted) in QIIME. All other data were analyzed by one-way ANOVA performed on transformed data using R. Across all time-points, only minimal differences were observed due to ISF alone. At 10 DPI, PRRSV infection reduced Prevotella 9 genera abundance from approximately 20% to less than 10%, but the specific function of this variety in pigs is unclear. The most notable finding was decreased relative abundance of Actinobacteria at 144 DPI between non-infected and infected treatments (P < 0.05), which is consistent with various dysbioses observed in other disease models. Our findings indicate that differences present were mainly due to PRRSV infection and not strongly influenced by ISF ingestion, which implies previously observed performance benefits conferred by dietary ISF are not likely due to changes in microbiome composition.

2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Brooke N Smith ◽  
Stephen A Fleming ◽  
Mei Wang ◽  
Ryan N Dilger

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important disease, and the ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and antiviral properties. The objective of this study was to quantify the effects of ISF consumption on fecal microbiome characteristics at different timepoints across a disease challenge and determine whether any changes, if present, elude to potential biological mechanisms for previously observed performance benefits. In total, 96 weaned barrows were group-housed in a Biosafety Level-2 containment facility and allotted to one of three experimental treatments that were maintained throughout the study: noninfected pigs receiving an ISF-devoid control diet (NEG, n = 24) and infected pigs receiving either the control diet (POS, n = 36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n = 36). Following a 7-d adaptation, pigs were inoculated intranasally with either a sham-control (phosphate-buffered saline) or live PRRSV (1 × 105 median tissue culture infectious dose[TCID]50/mL, strain NADC20). Fecal samples were collected from 48 individual pigs at pre-infection (−2 d post-inoculation [DPI]), peak-infection (10 DPI), and post-infection (144 DPI) timepoints. Extracted DNA was used to quantify fecal microbiota profiles via 16S bacterial rRNA sequencing. Differences in bacterial communities among diet groups were evaluated with principal coordinate analysis and permutational multivariate analysis of variance using UniFrac distance matrices based on both unweighted and weighted UniFrac distances using QIIME 2. All other data were analyzed by one-way ANOVA performed on square root transformations using R. Across all timepoints, only a few differences were observed due to ISF alone mainly in lowly abundant genera. The most notable differences observed were decreased relative abundance of Actinobacteria at 144 DPI between noninfected and infected treatments (P < 0.05), which is consistent with various dysbioses observed in other disease models. Our findings indicate that the differences present were mainly due to PRRSV-infection alone and not strongly influenced by diet, which implies that previously observed performance benefits conferred by dietary ISF are not likely due to the changes in microbiome composition.


2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Brooke N Smith ◽  
Maci L Oelschlager ◽  
Muhammed Shameer Abdul Rasheed ◽  
Ryan N Dilger

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important disease, and ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and antiviral properties. The objective of this experiment was to recreate immunological effects previously observed in young pigs infected with PRRSV receiving ISF and determine how those effects influence growth performance during the entire growth period from weaning to market. In total, 96 weaned barrows were group housed in a biosafety level-2 containment facility and allotted to 1 of 3 experimental treatments that were maintained throughout the study: noninfected pigs received an ISF-devoid control diet (NEG, n = 24), and infected pigs received either the control diet (POS, n = 36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n = 36). Following a 7-d adaptation, weanling pigs were inoculated intranasally with either a sham-control (PBS) or live PRRSV (1 × 105 TCID50/mL, strain NADC20). After inoculation, individual blood samples (n = 8 to 12/treatment) were routinely collected to monitor viral clearance and hematological parameters, including serum neutralizing anti-PRRSV antibody production. Pen-based oral fluids were used to monitor PRRSV clearance at later growth stages. A 1- or 2-way ANOVA was performed to compare experimental treatments depending on whether the outcome was repeatedly measured. In general, PRRSV infection decreased performance during early growth phases, resulting in 5.4% lower final BW for POS vs. NEG pigs (P < 0.05). Dietary ISF elicited inconsistent effects on growth performance, increased (P < 0.05) neutrophil cell counts and the relative proportion of memory T-cells, and decreased (P < 0.05) the time to full PRRSV clearance from oral fluids. Dietary ISF also elicited earlier, more robust anti-PRRSV neutralizing antibody production when compared with POS pigs. Additionally, and most notably, POS pigs experienced ~50% greater infection-related mortality rate vs. ISF pigs (P < 0.05), which may have significant economic implications for producers. Overall, dietary ISF ingestion supported immune responses and reduced mortality in PRRSV-infected pigs when fed to growing pigs though the biological mechanism of these effects remains unclear.


2020 ◽  
Vol 98 (4) ◽  
Author(s):  
Erin E Bryan ◽  
Brooke N Smith ◽  
Lauren T Honegger ◽  
Dustin D Boler ◽  
Ryan N Dilger ◽  
...  

Abstract The objective was to evaluate the effects of porcine reproductive and respiratory syndrome virus (PRRSV) infection and dietary soy isoflavone (ISF) supplementation on carcass cutability and meat quality of commercial pigs. Barrows (21 d of age) were randomly allotted to experimental treatments that were maintained throughout the study: noninfected pigs received an ISF-devoid control diet (CON, n = 22) and infected pigs received either the control diet (PRRSV–CON, n = 20) or that supplemented with total ISF in excess of 1,500 mg/kg (PRRSV–ISF, n = 25). Pigs were penned by treatment, with six pigs within a pen. Following a 7-d adaptation, weanling pigs were inoculated once intranasally with either a sham-control (phosphate buffered saline [PBS]) or live PRRSV (1 × 105 tissue culture infective dose [TCID]50/mL, strain NADC20). Pigs were maintained on experimental diets for 166 d after inoculation and then slaughtered (192 or 194 d of age; approximately 120 kg body weight [BW]). At 1-d postmortem, left sides were separated between the 10th and 11th rib for the determination of loin eye area (LEA), backfat (BF) thickness, and loin quality (ultimate pH, instrumental color, drip loss, visual color, marbling, and firmness). Loin chops were aged 14 d postmortem prior to Warner–Bratzler shear force (WBSF) determination. Belly width, length, thickness, and flop distance were determined. Data were analyzed as a one-way ANOVA with pig as the experimental unit. Carcass yield, LEA, BF, and estimated lean percentage did not differ (P > 0.26) among treatments. Loins from CON pigs had increased ultimate pH (P = 0.01), reduced L* scores (P = 0.005) coupled with darker visual color scores (P = 0.004), were firmer (P < 0.0001), and exhibited reduced drip loss (P = 0.01) compared with PRRSV–CON and PRRSV–ISF pigs. However, WBSF did not differ (P = 0.51) among treatments after 14 d of aging. Bellies from CON pigs were more firm compared with bellies from PRRSV–CON and ISF pigs (P < 0.01). These data suggest PRRSV infection did not alter carcass characteristics but may have marginally reduced loin and belly quality. Supplementation with dietary soy isoflavones did nothing to mitigate the detrimental effects of PRRSV infection.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1080
Author(s):  
Jaime Figueroa ◽  
Katalina del Río ◽  
Fernanda Romero ◽  
Juan Pablo Keim ◽  
Mónica Gandarillas

Brassica forage may be included in pigs’ diet as a dietary fiber ingredient to reduce feeding costs, benefit gut health, immune system, reproductive traits, and welfare. However, they contain antinutritional factors which may affect feeding behavior. This study evaluated feeding behavior of growing pigs offered winter (kale and swede) and summer (turnip and forage rape) brassicas incorporated on their diets as dried ground meal. Two consecutive experiments with six growing castrated male pigs were conducted. Experiment 1 evaluated the inclusion of turnip bulbs and forage rape, while experiment 2 studied inclusion of kale and swede bulbs. Brassica meal was included at 15% of the diet by replacing wheat middlings (control diet). In each experiment, pigs were offered experimental diets over six consecutive days for 10 min to test their acceptability (day 1–3) and preferences (day 4–6). No differences were found between diets that included brassicas and control diet in pigs’ acceptability or palatability (p > 0.05). However, during preference tests of winter brassicas, swede presented a higher consumption than control and kale (p < 0.05). This suggest that brassicas may be incorporated in growing pigs’ diets without negative effects in animals’ oral perception during short term feeding tests. Nevertheless, the long-term effects need to be explored.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Ursula Ruczizka ◽  
Barbara Metzler-Zebeli ◽  
Christine Unterweger ◽  
Evelyne Mann ◽  
Lukas Schwarz ◽  
...  

Using ceftiofur during the first days of life is a common preventative strategy against several bacterial diseases in pig production. This study aimed to evaluate short- and long-term effects of early use of ceftiofur on the fecal microbiota development in suckling and growing pigs. Sixty-four piglets from eight litters were assigned to the antibiotic (AB; n = 32) or control group (control; n = 32). Twelve hours postpartum (day 0) AB piglets received an intramuscular injection of ceftiofur (5.0 mg/kg body weight) or a placebo. DNA was extracted from fecal samples collected on days 0, 12, 28, and 97 for deep-sequencing of the 16S rRNA gene. The AB administration disturbed the maturational changes in the fecal microbiome, whereby effects were sex-specific. Sex-related differences in AB metabolism in females and males may have caused these diverging AB-effects on the fecal microbiota. Especially the loss of bacterial diversity and of certain taxa in female AB pigs may have contributed to the decreased body weight of these females on day 97 of life. Taken together, this study showed that an AB injection with ceftiofur 12 h postpartum markedly affected the successional changes in the fecal microbiota composition in male and female pigs, with long-term consequences for host performance.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 52-52
Author(s):  
Brooke N Smith ◽  
Maci Oelschlager ◽  
Melissa Hannas ◽  
Muhammad Shameer Abdul Rasheed ◽  
Ryan Dilger

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically-important disease and ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and anti-viral properties. The objective of this study was to determine long-term effects of feeding ISF on growth performance and both acute and recovery immune responses following PRRSV infection. In total, 96 weaned barrows were group-housed in a BSL-2 containment facility and allotted to 1 of 3 experimental treatments that were maintained throughout the study: non-infected pigs received an ISF-devoid control diet (NC, n = 24), and infected pigs received either the control diet (PC, n = 36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n = 36). Following a 7-day adaptation, weanling pigs were inoculated intranasally with either a sham-control (PBS) or live PRRSV (1×105 TCID50/mL, strain NADC20). After inoculation, individual blood samples (n = 8–12/treatment) were routinely collected to monitor viral clearance, hematological parameters, and anti-PRRSV antibody production, and pen-based oral fluids were used to monitor PRRSV clearance at later growth stages. A 2-way ANOVA (including time effect) was performed to compare NC and PC groups (infection status) and PC and ISF groups (ISF effect within infected pigs). In general, PRRSV infection decreased performance during early growth phases, resulting in 5.4% lower final BW for PC vs. NC pigs (P < 0.05). Dietary ISF elicited inconsistent effects on growth performance, reduced (P < 0.05) longitudinal serum viral loads, and increased (P < 0.05) the rate of PRRSV clearance from oral fluids. Dietary ISF also elicited earlier, more robust anti-PRRSV neutralizing antibody production as compared with PC pigs. Additionally, PC pigs experienced ~50% greater infection-related mortality vs. ISF pigs (P < 0.05), which could have significant economic implications for producers. Overall, dietary ISF ingestion supported immune responses and reduced mortality in PRRSV-infected pigs when fed to growing pigs.


2020 ◽  
Vol 98 (4) ◽  
Author(s):  
Jessica E Jasper ◽  
Omarh F Mendoza ◽  
Caleb M Shull ◽  
Wesley P Schweer ◽  
Kent J Schwartz ◽  
...  

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) compromises pig performance. However, increasing standardized ileal digestible Lys per Mcal metabolizable energy (SID Lys:ME) above requirement has been shown to mitigate reduced performance seen during a porcine reproductive and respiratory syndrome (PRRS) virus challenge. The objective of this study was to evaluate the effects of increasing the dietary SID Lys:ME from 100% National Research Council (NRC) requirement to 120% of the requirement in vaccinated (vac+; modified live vaccine Ingelvac PRRS) and non-vaccinated (vac−; no PRRS vaccine) grower pigs subjected to a PRRSV challenge. In addition, the dietary formulation approach to achieve the 120% ratio by increasing Lys relative to energy (HL) or diluting energy in relation to Lys (LE) was evaluated. This allowed us to test the hypothesis that pigs undergoing a health challenge would have the ability to eat to their energy needs. Within vaccine status, 195 mixed-sex pigs, vac+ (35.2 ± 0.60 kg body weight [BW]) and vac− (35.2 ± 0.65 kg BW) were randomly allotted to one of three dietary treatments (2.67, 3.23, or 3.22 g SID Lys:ME) for a 42-d PRRS virus challenge study representing 100%, 120%, and 120% of NRC requirement, respectively. Pigs were randomly allotted across two barns, each containing 24 pens with 7 to 10 pigs per pen (8 pens per diet per vaccine status). On day post-inoculation 0, both barns were inoculated with PRRSV and started on experimental diets. Within vaccine status, weekly and overall challenge period pig performance were assessed. In both vac+ (P &lt; 0.05) and vac− (P &lt; 0.05) pigs, the HL and LE diets increased end BW and overall average daily gain (ADG) ADG compared with pigs fed the control diet (P &lt; 0.05). Overall, average daily feed intake (ADFI) during the challenge period was greater (P &lt; 0.05) for pigs fed the LE diet compared with pigs fed control and HL treatments, regardless of vaccine status (20% and 17% higher ADFI than the control in vac+ and vac− pigs, respectively). The HL vac+ pigs had the greatest gain to feed (G:F) compared with the control and LE pigs (0.438 vs. 0.394 and 0.391 kg/kg, respectively; P &lt; 0.01). Feed efficiency was not impacted (P &gt; 0.10) by treatment in the vac− pigs. In summary, PRRSV-challenged grower pigs consumed feed to meet their energy needs as indicated by the increase in ADFI when energy was diluted in the (LE) diet, compared with control pigs. In both PRRS vac+ and vac− pigs subsequently challenged with PRRSV, regardless of formulation approach, fed 120% SID Lys:ME diets resulted in enhanced overall growth performance.


ZOOTEC ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 86
Author(s):  
Alfred Tamawiwy ◽  
M. Najoan ◽  
J S Mandey ◽  
F. N Sompie

ABSTRACT   EFFECT OF UTILIZATION OF VIRGIN COCONUT OIL (VCO) IN THE DIET ON PIG PERFORMANCE. Utilization of fats and oils in pig diets is of great importance due to their high energy value. VCO is obtained by cold press processing of the kernel from the coconut fruit. Utilization of virgin coconut oil (VCO) in the diets on pig performance.  The present study was designed to elaborate the effect of utilization of VCO in the diets on energy and protein digestibility of growing pigs. The experiment was conducted using 20 castrated male pigs aged 1.5 - 2.0 months weighing 12,0±2,0 kg. The data were analyzed according to the linear model procedure for ANOVA appropriate for Randomized Block Design with 5 treatments and 4 replications. Treatments were formulated as follow: R0 = 100% control diet + 0% VCO; R1 = 99.5% control diet + 1.0% VCO; R2 = 98.0% control diet + 2.0% VCO; R3 = 97.0% control diet + 3.0% VCO; and R4 = 96.0% control diet + 4.0% VCO. Parameters measured were: daily feed intake, daily gain, daily water consumption. The results showed that the utilization of VCO up to 4% in the diets had no significant effect (P > 0.05) on daily feed intake, daily gain, daily water consumption of pigs. It can be concluded that the addition of VCO up to 4.0% in the diets has no significant meaning on pig performance.   Key words: Virgin coconut oil (VCO), Performance, Growing pigs  


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 216-217
Author(s):  
O L Harrison ◽  
G E Nichols ◽  
J T Gebhardt ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
...  

Abstract Recent research has demonstrated that swine viruses can be transmitted via feed. Chemical feed additives have been suggested for the mitigation of these viruses in complete feed. Therefore, the objective of this study was to evaluate the efficacy of a commercially available formaldehyde-based feed additive, medium chain fatty acid blend (MCFA), and commercially available fatty acid-based products for mitigation of porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) in a feed matrix. Treatments consisted of: 1) non-treated positive control, 2) 0.33% commercial formaldehyde-based product (Sal Curb; Kemin Industries, Inc.; Des Moines, IA), 3) 0.5% MCFA blend (1:1:1 ratio of C6:0, C8:0, and C10:0, Sigma Aldrich, St. Louis, MO), 4) 0.25%, 5) 0.5%, or 6) 1% of commercial dry mono and diglyceride-based product (Furst Strike; Furst-McNess Company, Freeport, IL), 7) 0.25%, 8) 0.5%, or 9) 1% of commercial dry mono and diglyceride-based product (Furst Protect; Furst-McNess Company, Freeport, IL), 10) 0.25%, 11) 0.5%, or 12) 1% dry mono and diglyceride-based experimental product (Furst-McNess Company, Freeport, IL) with 3 replications/treatment. Treatments were applied to complete swine feed before inoculation with 106 TCID50/g of feed with PEDV or PRRSV. Post inoculation feed was held at ambient temperature for 24 h before being analyzed via qRT-PCR. The analyzed values represent the cycle threshold. Formaldehyde and MCFA decreased (P &lt; 0.05) the detectable RNA of PEDV and PRRSV compared to all other treatments. Furst Strike, Furst Protect, and the experimental product did not significantly impact detectability of PEDV or PRRSV RNA. In conclusion, MCFA and formaldehyde treatments are effective at reducing detection of RNA from PEDV and PRRSV in feed.


Sign in / Sign up

Export Citation Format

Share Document