scholarly journals Comparative effects of two multispecies direct-fed microbial products on energy status, nutrient digestibility, and ruminal fermentation, bacterial community, and metabolome of beef steers

2020 ◽  
Vol 98 (9) ◽  
Author(s):  
Ibukun M Ogunade ◽  
Megan McCoun ◽  
Modoluwamu D Idowu ◽  
Sunday O Peters

Abstract We examined the effects of two direct-fed microbials (DFM) containing multiple microbial species and their fermentation products on energy status, nutrient digestibility, and ruminal fermentation, bacterial community, and metabolome of beef steers. Nine ruminally cannulated Holstein steers (mean ± SD body weight: 243 ± 12.4 kg) were assigned to three treatments arranged in a triplicated 3 × 3 Latin square design with three 21-d periods. Dietary treatments were 1) control (CON; basal diet), 2) Commence (PROB; basal diet plus 19 g/d of Commence), and 3) RX3 (SYNB; basal diet plus 28 g/d of RX3). Commence and RX3 are both multispecies DFM products. From day 16 to 20 of each period, feed and fecal samples were collected daily to determine the apparent total tract digestibilities of nutrients using indigestible neutral detergent fiber method. On day 21 of each period, blood samples were collected for analysis of plasma glucose and nonesterified fatty acid. Ruminal contents were collected at approximately 1, 3, 6, 9, 12, and 18 h after feeding on day 21 for analysis of volatile fatty acids (VFA), lactate, ammonia-N concentrations, bacterial community, and metabolome profile. Total tract digestibilities of nutrients did not differ (P > 0.05) among treatments. Compared with CON, steers fed either supplemental PROB or SYNB had greater (P = 0.04) plasma glucose concentrations. Compared with CON, total ruminal VFA, propionate, isovalerate, and valerate concentrations increased (P ≤ 0.05) or tended to increase (P ≤ 0.10) with either supplemental PROB or SYNB, but were not different (P > 0.05) between PROB and SYNB. Compared with CON, PROB reduced (P ≤ 0.05) the relative abundance of Prevotella 1 and Prevotellaceae UCG-001 but increased (P ≤ 0.05) the relative abundance of Rikenellaceae RC9, Succinivibrionaceae UCG-001, Succiniclasticum, and Ruminococcaceae UCG-002. Supplemental SYNB decreased (P ≤ 0.05) the relative abundance of Prevotella 1 and Prevotellaceae UCG-001 but increased (P ≤ 0.05) the relative abundance of Prevotella 7, Succinivibrio, Succiniclasticum, and Ruminococcaceae UCG-014. Compared with CON, metabolome analysis revealed that some amino acids were increased (P ≤ 0.05) in steers fed PROB. This study demonstrated that, compared with CON, supplementation of either PROB or SYNB altered the ruminal bacterial community and metabolome differently; however, their effects on the ruminal VFA profile and energy status of the steers were not different from each other.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 435-436
Author(s):  
Ibukun M Ogunade ◽  
Andres A Pech-Cervantes ◽  
Devan M Compart

Abstract This study evaluated the effects of two different multi-strain direct-fed microbial products on energy status, nutrient digestibility, and ruminal metatranscriptome of beef steers. Nine rumen-cannulated Holstein steers were assigned to 3 treatments arranged in a 3 × 3 Latin square design with three 21-d periods. Dietary treatments were (1) CON (basal diet without additive), (2) PROB (basal diet plus 19 g/d of Commence), and (3) SYNB (basal diet plus 28 g/d of RX3). Commence is a blend of S. cerevisiae, Enterococcus lactis, Bacillus subtilis, Enterococcus faecium, and L. casei. RX3 is a blend of S. cerevisiae and the fermentation products of S. cerevisiae, Enterococcus lactis, Bacillus licheniformis, and Bacillus subtilis. Rumen fluid (for metatranscriptomics analysis) and blood samples (for analysis of plasma glucose and non-esterified fatty acid) were collected on d 21 of each period. From d 16 – 20, TMR and fecal samples were collected daily to determine apparent total tract digestibility of nutrients using indigestible neutral detergent fiber (iNDF) method. The data were analyzed using the GLIMMIX procedure of SAS. The model included the effects of treatment, period, and random effects of cow and square. There were no effects on DMI and non-esterified fatty acid. Compared with CON, steers fed either additives had greater (P = 0.02) plasma glucose concentrations. Results of metatranscriptome analysis revealed no differentially expressed functional genes among the treatments. Apparent total-tract digestibility of nutrients were also similar among treatments. These results demonstrated that supplemental PROB and SYNB improved the plasma glucose concentration, but had no effects on the functional capacity of the ruminal microbiome and apparent digestibility of nutrients in beef steers.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 398-398
Author(s):  
Ibukun M Ogunade ◽  
Devan M Compart ◽  
Andres A Pech-Cervantes

Abstract We examined the effects of two direct-fed microbials (DFM) containing multiple microbial species and their fermentation products on ruminal fermentation, bacterial community and metabolome of beef steers. Nine rumen-cannulated Holstein steers were assigned to 3 treatments arranged in a 3 × 3 Latin square design with three 21-d periods. Dietary treatments were (1) CON (basal diet without additive), (2) PROB (basal diet plus 19 g/d of Commence), and (3) SYNB (basal diet plus 28 g/d of RX3). Commence is a blend of active S. cerevisiae, Enterococcus lactis, Bacillus subtilis, Enterococcus faecium, and L. casei, and their fermentation products. RX3 is a blend of active S. cerevisiae and the fermentation products of S. cerevisiae, Enterococcus lactis, Bacillus licheniformis, and Bacillus subtilis. Daily dry matter intake was calculated. On d 21 of each period, ruminal contents were sampled at 3, 6, 12, and 18 h after feeding for analysis of VFA, bacterial community via 16S rRNA sequencing, and metabolome via chemical isotope labeling liquid chromatography mass spectrometry. There was no effect on DMI. Compared to CON, supplementation of either PROB or SYNB increased or tended to increase (P ≤ 0.10) total VFA, propionate, and valerate concentrations. Compared to CON, PROB reduced (P ≤ 0.05) the relative abundance of Prevotella 1 and Prevotellaceae UCG-001, but increased those of Rikenellaceae RC9, Succinivibrionaceae UCG-001, Succiniclasticum, Ruminococcaceae UCG-014, and Ruminococcaceae UCG-002, whereas SYNB decreased (P ≤ 0.05) the relative abundance of Prevotella 1 and Prevotellaceae UCG-001, and increased those of Prevotella 7, Succinivibrio, Succiniclasticum, and Ruminococcaceae UCG-014. Metabolome analysis revealed that 8 ruminal metabolites, including some amino acids, were increased (P ≤ 0.05) by PROB, whereas no differences were found for SYNB. This study demonstrated that supplemental PROB or SYNB altered the ruminal bacterial community and metabolome differently to achieve a similar ruminal fermentation pattern.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Tessa M Schulmeister ◽  
Martin Ruiz-Moreno ◽  
Mariana E Garcia-Ascolani ◽  
Francine M Ciriaco ◽  
Darren D Henry ◽  
...  

Abstract An experiment was conducted during the winter of two consecutive years to evaluate the effects of feeding green-chopped cool-season forages on digestibility, ruminal fermentation, and blood parameters in beef steers. Nine ruminally cannulated Angus crossbred steers (year 1: 359 ± 79 kg; year 2: 481 ± 105 kg) received ad libitum green-chopped forages from pastures planted with one of the following mixtures: 1) OAT = Horizon 201 oats (Avena sativa L.)/Prine annual ryegrass (Lolium multiflorum Lam.) at 95 and 17 kg/ha, respectively; 2) RYE = FL401 cereal rye (Secale cereale L.)/Prine annual ryegrass (Lolium multiflorum Lam.) at 78 and 17 kg/ha, respectively; or 3) TRIT = Trical 342 triticale (X Triticosecale spp.)/Prine annual ryegrass (Lolium multiflorum Lam.) at 95 and 17 kg/ha, respectively. Intake was measured using the GrowSafe system and orts were discarded prior to subsequent feeding. After a 14-d adaptation, feed and fecal samples were collected twice daily for 4 d to determine apparent total tract nutrient digestibility using indigestible neutral detergent fiber (NDF) as an internal marker. On day 19, blood and ruminal fluid samples were collected every 3 h during a 24-h period to analyze plasma urea nitrogen (PUN) and glucose, ruminal pH, and concentration of ruminal ammonia nitrogen (NH3-N) and volatile fatty acids (VFA). Data were analyzed as a generalized randomized block design with repeated measures using the PROC MIX of SAS. No effect of treatment (P > 0.05) was observed for intake of dry matter, organic matter (OM), crude protein, NDF, or acid detergent fiber. Apparent total tract digestibility of nutrients was greater (P < 0.05) for OAT and TRIT when compared with RYE, with OM digestibility being 82.7%, 79.6%, and 69.5%, respectively. An effect of time (P < 0.01) was observed for ruminal pH. Plasma concentration of glucose was greater (P < 0.01) in steers consuming OAT, whereas steers fed RYE had greater (P < 0.05) concentrations of ruminal NH3-N and PUN, and the least concentration of total ruminal VFA (P < 0.05), despite having the greatest (P > 0.05) molar proportion of acetate, branched-chain VFA, and acetate:propionate. Increased nutrient digestibility and favorable ruminal fermentation and blood metabolites of OAT and TRIT are potentially conducive to enhanced growth performance when compared with RYE.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 430-430
Author(s):  
Ibukun M Ogunade ◽  
Devan M Compart ◽  
Andres A Pech-Cervantes

Abstract We examined the effects of dietary supplementation of a Saccharomyces cerevisiae-based direct-fed microbial on plasma carbonyl-metabolome and fecal bacterial community of beef steers during a 42-d receiving period. Forty newly-weaned beef steers were used in this study. The steers were stratified by BW and randomly assigned to receive a basal diet with no additive (CON; n = 20) or a basal diet supplemented with 19 g of CommenceTM (PROB; n = 20). CommenceTM (PMI, Arden Hills, MN) contains a blend of 6.2 × 1011 cfu/g of S. cerevisiae, 3.5 × 1010 cfu/g of a mixture of Enterococcus lactis, Bacillus subtilis, Enterococcus faecium, and L. casei. On d 0 and 40, rectal fecal samples were collected for bacterial community analysis via sequencing of the V3-V4 region of 16S rRNA gene. On d 42, blood was collected for analysis of carbonyl-containing metabolites in plasma using a chemical isotope labeling/liquid chromatography mass spectrometry-based untargeted metabolomics. The data were analyzed using the GLIMMIX procedure of SAS with treatment as a fixed effect) and (random effect). A total number of 812 unique plasma metabolites were detected. Up to 305 metabolites [fold change (FC) ≥ 1.5, FDR ≤ 0.01] including glucose, hippuric acid, glycoaldehyde, and 5-hydroxykynurenamine were increased by PROB supplementation, whereas 199 metabolites (FC ≤ 0.63, FDR ≤ 0.01) including acetoacetate were reduced. Correlation analysis showed that plasma concentrations of 5-oxopentanoate, 2-aceto-2-hydroxybutanoate, and 3-methyl-2-oxopentanoic acid were positively correlated (P ≤ 0.10) with average daily gain. Supplemental PROB increased (P ≤ 0.05) the relative abundance of Prevotellaceae, Megasphaera, Dorea, Acetitomaculum, and Blautia. In contrast, the relative abundance of Elusimicrobium, Moheibacter, and Stenotrophomonas were reduced (P ≤ 0.05). This study demonstrated that PROB altered the plasma carbonyl-metabolome and fecal bacterial community of the beef steers.


Author(s):  
Ibukun M Ogunade ◽  
Godstime Taiwo ◽  
Zaira M Estrada-Reyes ◽  
Y Jiang ◽  
Andres A Pech-Cervantes ◽  
...  

Abstract We examined the effects of dietary supplementation of a blend of mannan and glucan on the growth performance, energy status, and whole-blood immune gene expression of newly weaned beef steers during a 42 d receiving period. Forty eight newly weaned Angus crossbred steers (2 d post-weaning; 199 ± 13 kg of initial BW) from a single source were stratified by BW and randomly assigned to 1 of 2 treatments: basal diet with no additive (CON; n = 24) or a basal diet top-dressed with 5 g of a blend of mannan and glucan (MANGLU; n = 24). Average daily gain (ADG) and feed efficiency (FE) from days 1 – 14, 15 – 42, and 1 – 42 were calculated from daily dry matter intake (DMI) and weekly BW. Blood samples were collected on days 0, 14, and 42 for measurement of plasma glucose and NEFA. Blood samples collected on days 14 and 42 were composited for each steer for untargeted carbonyl-metabolome analysis (measurement of carbonyl-containing metabolites). Expression of 84 immune-related genes was analyzed on blood samples collected on day 42. Beginning on days 37 to 42, total mixed ration, refusals, and fecal samples were collected once daily to determine apparent total tract digestibility of DM, CP, NDF, and ADF using indigestible NDF as an internal marker. Over the 42-d feeding trial, supplemental MANGLU tended to increase final BW (P = 0.07) and ADG (P = 0.06). Compared to CON, beef steers fed supplemental MANGLU had greater (P = 0.01) DMI during the first 14 d, greater DM digestibility (P = 0.03), and tended to have greater NDF digestibility (P = 0.09). No treatment effects (P > 0.10) on plasma glucose and NEFA on d 14 and 42 were detected; however, carbonyl-metabolome analysis revealed increased (FDR ≤ 0.05) plasma concentrations of galactose and glyceraldehydes, and altered (FDR ≤ 0.05) concentrations of some microbiome-derived metabolites in beef steers fed MANGLU. Compared with CON, MANGLU increased (P ≤ 0.05) the expression of five immune-related genes involved in recognition of and mounting immune defense against microbial pathogens. In conclusion, the results of this study demonstrated that supplemental MANGLU enhances beef cattle immunocompetence and productivity during feedlot receiving period.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 596
Author(s):  
Yafeng Huang ◽  
Cory Matthew ◽  
Fei Li ◽  
Zhibiao Nan

This study evaluated common vetch stover as a feed in mixed rations for growing lambs. Four common vetch varieties were compared with alfalfa (control) for their effects on growth performance, ruminal fermentation, nutrient digestibility, and nitrogen retention. Male Hu lambs (n = 50) aged 3 months, with a mean body weight of 17.5 ± 0.34 kg were allocated randomly to one of the five dietary treatments, making 10 lambs per treatment. The experiment lasted 67 days with a 10-day adaptation period and a 50-day fattening period, and with the final 7 days used for a nutrient digestibility and nitrogen balance trial. All diets contained 30.0% maize straw and 50.0% concentrate, with different forage sources (on a fed basis): 20.0% alfalfa hay (control), 20.0% local common vetch variety 333A (C333A) stover, or 20.0% stover of one of three improved common vetch varieties: Lanjian No. 1 (CLJ1), Lanjian No. 2 (CLJ2), or Lanjian No. 3 (CLJ3). For stover quality, CLJ1 stover had the greatest crude protein (CP), in vitro organic matter digestibility (IVOMD), and metabolizable energy (ME) content and the least cell wall contents, while C333A stover had the least CP, IVOMD, and ME contents and the greatest cell wall contents. Sheep fed the control diet had a greater average daily gain (ADG), apparent digestibility of organic matter (DOM), neutral detergent fiber, acid detergent fiber, and nitrogen retention, and greater ruminal total volatile fatty acids concentration than lambs fed the C333A or CLJ3 diet, but similar performance to lambs fed the CLJ1 and CLJ2 diets. The feed conversion ratio and predicted CH4 emission per unit of DOM intake and ADG of the control, CLJ1, and CLJ2 diets was significantly lower (p < 0.05) than for the other diets. Based on these results, stovers of varieties CLJ1 and CLJ2 can be recommended as an alternative to alfalfa hay and for use in a legume crop rotation with cereals on the Tibetan plateau.


2014 ◽  
Vol 66 (5) ◽  
pp. 1495-1503 ◽  
Author(s):  
P. Persichetti Júnior ◽  
G.A. Almeida Júnior ◽  
C. Costa ◽  
P.R.L. Meirelles ◽  
J.P.F. Silveira ◽  
...  

Five Holstein cows were distributed in a 5x5 latin square design to assess the effect of replacement levels of dry ground corn grain (DGCG) by high moisture corn silage (HMCS) on intake, total nutrient digestibility and plasma glucose, according to the following treatments: 1) 100% DGCG; 2) 75% DGCG and 25% HMCS; 3) 50% DGCG and 50% HMCS; 4) 25% DGCG and 75% HMCS; 5) 100% HMCS. The experiment lasted 70 days, divided into five phases of 14 days each. The digestibility was obtained using chromic oxide (Cr2O3) as the indicator. Fecal samples were collected twice daily and blood samples were collected on the last day of each period before the first meal (0h) and 2h, 4h, 6h and 12h after the meal. There was no effect (P>0.05) on the intake of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch. The total apparent digestibility of DM, crude protein (CP), NDF and ADF were not affected (P>0.05) by the treatments, as well as the plasma glucose concentration. However, there was a decreased linear effect (P<0.05) for the protein intake and increased linear effect (P<0.05) for starch digestibility, as the level of HMCS was increased in the diets.


2020 ◽  
Vol 98 (4) ◽  
Author(s):  
Tao Ran ◽  
Peixin Jiao ◽  
Ousama AlZahal ◽  
Xiaolai Xie ◽  
Karen A Beauchemin ◽  
...  

Abstract Our previous study suggested that supplementation of high-grain diets with ruminally protected and non-protected active dried yeast (ADY) may potentially reduce manure pathogen excretion by feedlot cattle. We hypothesized that feeding ruminally protected ADY might change the fecal bacterial community of finishing cattle. The objective of this study was to investigate the effects of feeding ruminally protected and non-protected ADY to finishing beef steers on their fecal bacterial community. Fresh fecal samples were collected on day 56 from 50 steers fed one of five treatments: 1) control (no monensin, tylosin, or ADY), 2) antibiotics (ANT, 330 mg monensin + 110 mg tylosin·steer−1d−1), 3) ADY (1.5 g·steer−1d−1), 4) encapsulated ADY (EDY; 3 g·steer−1d−1), and 5) a mixture of ADY and EDY (MDY; 1.5 g ADY + 3 g EDY·steer−1d−1). Bacterial DNA was extracted from fecal samples and sequenced using a MiSeq high-throughput sequencing platform. A total number of 2,128,772 high-quality V4 16S rRNA sequences from 50 fecal samples were analyzed, and 1,424 operational taxonomic units (OTU) were detected based on 97% nucleotide sequence identity among reads, with 769 OTU shared across the five treatments. Alpha diversity indices, including species observed, Chao estimate, abundance-based coverage estimator, Shannon, Simpson, and coverage, did not differ among treatments, and principal coordinate analysis revealed a high similarity among treatments without independent distribution. Bacteroidetes and Firmicutes were dominant phyla in the fecal bacterial community for all treatments, with a tendency (P &lt; 0.10) for greater relative abundance of Bacteroidetes but lesser Firmicutes with ANT, EDY, and MDY compared with control steers. Prevotella was the dominant genus in all treatments and steers supplemented with ANT, EDY, and MDY had greater (P &lt; 0.05) relative abundance of Prevotella than control steers, but lesser (P &lt; 0.03) relative abundance of Oscillospira. No differences between ADY and control were observed for the aforementioned variables. Fecal starch contents were not different among treatments, but the relative abundance of Bacteroidetes, as well as Prevotella at genera level, tended (P &lt; 0.06) to be positively correlated to fecal starch content. We conclude that supplementing ruminally protected or non-protected ADY or ANT had no effect on diversity and richness of fecal bacteria of finishing beef cattle, whereas feeding protected ADY or ANT to finishing beef steers altered the dominant fecal bacteria at phylum and genus levels. Therefore, supplementation of ruminally protected ADY may potentially improve intestinal health by stimulating the relative abundance of Prevotella.


Author(s):  
Marcos Elias Duarte ◽  
Chris Sparks ◽  
Sung Woo Kim

Abstract This study aimed to evaluate the effects of increasing levels of β-glucanase on modulation of jejunal mucosa-associated microbiota in relation to nutrient digestibility and intestinal health of pigs fed diets with 30% corn DDGS and xylanase. Forty pigs at 12.4 ± 0.5 kg BW were allotted in a RCBD with initial BW and sex as blocks. Dietary treatments consisted of a basal diet with xylanase (1,500 EPU/kg) and increasing levels of β-glucanase (0, 200, 400, and 600 U/kg) meeting nutrient requirements and fed to pigs for 21 d. Blood samples were collected at d 19. At d 21, all pigs were euthanized to collect intestinal tissues and digesta. Tumor necrosis factor alpha (TNFα), IL-6, and MDA were measured in plasma and mid-jejunal mucosa. Viscosity was determined using digesta from the distal jejunum. Ileal and rectal digesta were evaluated to determine AID and ATTD of nutrients. Mucosa samples from the mid-jejunum were utilized for microbiota sequencing. Data were analyzed using the MIXED procedure on SAS 9.4. Overall, increasing dietary β-glucanase tended to increase (Linear; P = 0.077) the ADG of pigs. Increasing dietary β-glucanase affected (quadratic; P &lt; 0.05) the relative abundance of Bacteroidetes, reduced (linear; P &lt; 0.05) Helicobacter rappini, whereas increased (Linear, P &lt; 0.05) Faecalibacterium prausnitzii. β-glucanase supplementation (0 vs. others) tended to increase (P = 0.096) the AID of CP in the diet, whereas increasing dietary β-glucanase tended to increase (Linear; P = 0.097) the ATTD of GE in the diet and increased (Linear; P &lt; 0.05) the concentration of IL-6 in the plasma of pigs. In conclusion, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg) modulated mucosa-associated microbiota by increasing the relative abundance of beneficial bacteria and reducing potentially harmful bacteria. Furthermore, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg feed) enhanced the status of intestinal environment and nutrient utilization, as well as reduced systemic inflammation of pigs, collectively resulting in moderate improvement of growth performance. Supplementing β-glucanase at a range of 312 to 410 U/kg with xylanase at 1,500 EPU/kg feed showed the most benefit on jejunal mucosa-associated microbiota and reduced systemic inflammation of pigs.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1011 ◽  
Author(s):  
Andre S. Avila ◽  
Maximiliane A. Zambom ◽  
Andressa Faccenda ◽  
Maria L. Fischer ◽  
Fernando A. Anschau ◽  
...  

The objective of this study was to evaluate the effect of inclusion of condensed tannins (CT) from black wattle (Acacia mearnsii) on feed intake, ruminal protozoa population, ruminal fermentation, and nutrient digestibility in Jersey steers. Five ruminally-cannulated steers were used in a 5 × 5 Latin square design, with five periods of 20 days each (14 days for diet adaptation and six days for sample collection per period). Treatments were composed of dietary inclusion levels of condensed tannins at 0, 5, 10, 15, and 20 g/kg of diet dry matter. Intakes of dry matter, organic matter, ether extract, crude protein, neutral detergent fiber, and total digestible nutrients were not affected by condensed tannins. The ruminal pH was reduced linearly with tannin levels. Ruminal ammonia nitrogen concentration was not affected by tannins. Tannins reduced the molar proportion of acetate and did not affect the ruminal protozoal population, which might be related to the low doses used. Digestibilities of dry matter, organic matter, and neutral detergent fiber were not altered; however, there was a linear reduction in crude protein digestibility. Based on these results, CT extracts from black wattle are not recommended for improving nutrient utilization in steers at the tested levels.


Sign in / Sign up

Export Citation Format

Share Document