scholarly journals PSVIII-8 Effect of Lactobacillus Casei Zhang on E. coli induced injury of blood and milk barrier in dairy cow

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 259-259
Author(s):  
Yuhui Zheng ◽  
Shengli Li

Abstract Bovine mastitis is one of the major diseases which directly affects the milk production performance and it causes huge economic losses in the dairy industry. Bacterial infection is the main risk factor of bovine mastitis and the antibiotic therapy is the primary choice to control the disease. However, persistence use of antibiotic increases the incidence of bacterial resistance and traces of antibiotic residues in animal products. Lactobacillus casei Zhang is one of the probiotics with multiple biological functions, which has certain bacteriostatic effect on pathogenic microorganism. The purpose of this study was to explore the effect of Lactobacillus casei Zhang (L. casei Zhang) on the prevention of E. coli-induced milk-blood barrier damage. Bovine mammary epithelial cells (BMECs) were used to establish a milk-blood model and Control group (PBS), E. coli group, and L. casei Zhang pretreatment plus E. coli group were set up respectively. The results showed that: L. casei Zhang could significantly reduce the increase of LDH release caused by E. coli treatment (P< 0.05). And it can also significantly reduce the decrease of transmembrane resistance of monolayer cells caused by E. coli treatment (P< 0.05). In addition, L. casei Zhang could significantly reduce the expression of tight junction proteins ZO-1, Claudin-1, Claudin-4 and Occludin (P < 0.05). In conclusion, L. casei Zhang could effectively improve the damage of the blood-milk barrier caused by E. coli and could protect BMECs during bacterial infection.

2020 ◽  
Vol 17 ◽  
pp. 00103
Author(s):  
Oleg Fomenko ◽  
Evgeny Mikhailov ◽  
Nadezhda Pasko ◽  
Svetlana Grin ◽  
Andrey Koshchaev ◽  
...  

The emergence of antibiotic-resistant bacteria is considered a serious problem. The resistance of bacteria against antimicrobial substances becomes important in the repair systems for damage to DNA and RNA molecules. The role of the antioxidant system in the development of bacterial resistance against antibiotics is not yet practically studied. The article studied the expression regulation of the genes of antioxidant enzymes and enzymes involved in the genetic information in E. coli cells with the antibiotic resistance against apramycin and cefatoxime. The study was conducted on bacterial cells resistant against these two antibiotics. The genes blaOXA-1, blaSHV, blaTEM, mdtK, aadA1, aadA2, sat, strA, blaCTX, blaPER-2, tnpA, tnpR, intC1 and intC1c were identified in bacterial cell case. This indicates the presence of plasmids in bacteria with these genes, which provide bacterial resistance to apramycin and cefatoxime. It was established that during the formation of cefotaxime resistance, there was a sharp increase in the expression of the Cu, Zn superoxide dismutase gene: in comparison with the control group, the representation of its transcripts increased 141.04 times for cefotoxime and 155.42 times for apramycin. It has been established that during the formation of resistance to the studied antibiotics in E. coli, an increase in the expression of the end4 and end3 genes is observed. There is tendency toward an increase in the number of transcripts of the pol3E gene observed in the formation of resistance against cefotaxime and apromycin.


2015 ◽  
Vol 6 (6) ◽  
pp. 879-886 ◽  
Author(s):  
B. Seridan Assis ◽  
P. Germon ◽  
A.M. Silva ◽  
S. Even ◽  
J.R. Nicoli ◽  
...  

Bovine mastitis, an inflammatory disease of the mammary gland often associated to bacterial infection, is the first cause of antibiotic use in dairy cattle. Because of the risk of antibioresistance emergence, alternative non-antibiotic strategies are needed to prevent or to cure bovine mastitis and reduce the antibiotic use in veterinary medicine. In this work, we investigated Lactococcus lactis V7, a strain isolated from the mammary gland, as a probiotic option against bovine mastitis. Using bovine mammary epithelial cell (bMEC) culture, and two representative strains for Escherichia coli and for Staphylococcus aureus, two major mastitis pathogens, we investigated L. lactis V7 ability to inhibit cell invasion (i.e. adhesion and internalization) of these pathogens into bMEC. L. lactis V7 ability to modulate the production of CXCL8, a key chemokine IL-8 responsible for neutrophil influx, in bMEC upon challenge with E. coli was investigated by an ELISA dosage of CXCL8 in bMEC culture supernatants. We showed that L. lactis V7 inhibited the internalisation of both E. coli and S. aureus strains into bMEC, whereas it inhibited the adhesion of only one out of the two S. aureus strains and of none of the E. coli strains tested. Investigation of the bMEC immune response showed that L. lactis V7 alone induced a slight increase in CXCL8 production in bMEC and that it increased the inflammatory response in bMEC challenged with the E. coli strains. Altogether these features of L. lactis V7 make it a potential promising candidate for a probiotic prevention strategy against bovine mastitis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jin-Peng Wang ◽  
Qi-Chao Hu ◽  
Jian Yang ◽  
Zhuo-Ma Luoreng ◽  
Xing-Ping Wang ◽  
...  

Bovine mastitis is an inflammatory response of mammary glands caused by pathogenic microorganisms such as Escherichia coli (E. coli). As a key virulence factor of E. coli, lipopolysaccharide (LPS) triggers innate immune responses via activation of the toll-like-receptor 4 (TLR4) signaling pathway. However, the molecular regulatory network of LPS-induced bovine mastitis has yet to be fully mapped. In this study, bovine mammary epithelial cell lines MAC-T were exposed to LPS for 0, 6 and 12 h to assess the expression profiles of long non-coding RNAs (lncRNAs) using RNA-seq. Differentially expressed lncRNAs (DElncRNAs) were filtered out of the raw data for subsequent analyses. A total of 2,257 lncRNAs, including 210 annotated and 2047 novel lncRNAs were detected in all samples. A large proportion of lncRNAs were present in a high abundance, and 112 DElncRNAs were screened out at different time points. Compared with 0 h, there were 22 up- and 25 down-regulated lncRNAs in the 6 h of post-infection (hpi) group, and 27 up- and 22 down-regulated lncRNAs in the 12 hpi group. Compared with the 6 hpi group, 32 lncRNAs were up-regulated and 25 lncRNAs were down-regulated in the 12 hpi group. These DElncRNAs are involved in the regulation of a variety of immune-related processes including inflammatory responses bMECs exposed to LPS. Furthermore, lncRNA TCONS_00039271 and TCONS_00139850 were respectively significance down- and up-regulated, and their target genes involve in regulating inflammation-related signaling pathways (i.e.,Notch, NF-κB, MAPK, PI3K-Akt and mTOR signaling pathway), thereby regulating the occurrence and development of E. coli mastitis. This study provides a resource for lncRNA research on the molecular regulation of bovine mastitis


2020 ◽  
Vol 7 ◽  
Author(s):  
Vanessa C. Johanns ◽  
Lennard Epping ◽  
Torsten Semmler ◽  
Fereshteh Ghazisaeedi ◽  
Antina Lübke-Becker ◽  
...  

To prevent economic losses due to post-weaning diarrhea (PWD) in industrial pig production, zinc (Zn) feed additives have been widely used, especially since awareness has risen that the regular application of antibiotics promotes buildup of antimicrobial resistance in both commensal and pathogenic bacteria. In a previous study on 179 Escherichia coli collected from piglets sacrificed at the end of a Zn feeding trial, including isolates obtained from animals of a high-zinc fed group (HZG) and a corresponding control group (CG), we found that the isolate collection exhibited three different levels of tolerance toward zinc, i.e., the minimal inhibitory concentration (MIC) detected was 128, followed by 256 and 512 μg/ml ZnCl2. We further provided evidence that enhanced zinc tolerance in porcine intestinal E. coli populations is clearly linked to excessive zinc feeding. Here we provide insights about the genomic make-up and phylogenetic background of these 179 E. coli genomes. Bayesian analysis of the population structure (BAPS) revealed a lack of association between the actual zinc tolerance level and a particular phylogenetic E. coli cluster or even branch for both, isolates belonging to the HZG and CG. In addition, detection rates for genes and operons associated with virulence (VAG) and bacteriocins (BAG) were lower in isolates originating from the HZG (41 vs. 65% and 22 vs. 35%, p < 0.001 and p = 0.002, resp.). Strikingly, E. coli harboring genes defining distinct pathotypes associated with intestinal disease, i.e., enterotoxigenic, enteropathogenic, and Shiga toxin-producing E. coli (ETEC, EPEC, and STEC) constituted 1% of the isolates belonging to the HZG but 14% of those from the CG. Notably, these pathotypes were positively associated with enhanced zinc tolerance (512 μg/ml ZnCl2 MIC, p < 0.001). Taken together, zinc excess seems to influence carriage rates of VAGs and BAGs in porcine intestinal E. coli populations, and high-zinc feeding is negatively correlated with enteral pathotype occurrences, which might explain earlier observations concerning the relative increase of Enterobacterales considering the overall intestinal microbiota of piglets during zinc feeding trials while PWD rates have decreased.


2020 ◽  
Vol 8 (10) ◽  
pp. 1488
Author(s):  
Mengze Du ◽  
Xiaodan Liu ◽  
Jiajia Xu ◽  
Shuxian Li ◽  
Shenghua Wang ◽  
...  

Coliforms and Staphylococcus spp. infections are the leading causes of bovine mastitis. Despite extensive research and development in antibiotics, they have remained inadequately effective in treating bovine mastitis induced by multiple pathogen infection. In the present study, we showed the protective effect of Zophobas morio (Z. morio) hemolymph on bovine mammary epithelial cells against bacterial infection. Z. morio hemolymph directly kills both Gram-positive and Gram-negative bacteria through membrane permeation and prevents the adhesion of E. coli or the clinically isolated S. simulans strain to bovine mammary epithelial (MAC-T) cells. In addition, Z. morio hemolymph downregulates the expression of nucleotide-binding oligomerization domain (NOD)-like receptor family member pyrin domain-containing protein 3 (NLRP3), caspase-1, and NLRP6, as well as inhibits the secretion of interleukin-1β (IL-1β) and IL-18, which attenuates E. coli or S. simulans-induced pyroptosis. Overall, our results suggest the potential role of Z. morio hemolymph as a novel therapeutic candidate for bovine mastitis.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5711 ◽  
Author(s):  
Lumin Yu ◽  
Fei Shang ◽  
Xiaolin Chen ◽  
Jingtian Ni ◽  
Li Yu ◽  
...  

Background Escherichia coli is an important opportunistic pathogen that could cause inflammation of the udder in dairy cows resulting in reduced milk production and changes in milk composition and quality, and even death of dairy cows. Therefore, mastitis is the main health issue which leads to major economic losses on dairy farms. Antibiotics are routinely used for the treatment of bovine mastitis. The ability to form biofilm increases the antibiotic resistance of E. coli. Nanoparticles (NPs), a nanosized, safe, and highly cost-effective antibacterial agent, are potential biomedical tools. Given their antibacterial activities, silver nanoparticles (Ag NPs) have a broad range of applications. Methods In this study, we performed antibacterial activity assays, biofilm formation assays, scanning electron microscopy (SEM) experiments, and real-time reverse transcription PCR (RT-PCR) experiments to investigate the antibacterial and anti-biofilm effect of quercetin, Ag NPs, and Silver-nanoparticle-decorated quercetin nanoparticles (QA NPs) in E. coli strain ECDCM1. Results In this study, QA NPs, a composite material combining Ag NPs and the plant-derived drug component quercetin, exhibited stronger antibacterial and anti-biofilm properties in a multi-drug resistant E. coli strain isolated from a dairy cow with mastitis, compared to Ag NPs and Qe. Discussion This study provides evidence that QA NPs possess high antibacterial and anti-biofilm activities. They proved to be more effective than Ag NPs and Qe against the biofilm formation of a multi-drug resistant E. coli isolated from cows with mastitis. This suggests that QA NPs might be used as a potential antimicrobial agent in the treatment of bovine mastitis caused by E. coli.


2018 ◽  
Vol 46 (1) ◽  
pp. 8
Author(s):  
Zhe Zhang ◽  
Xin-Pu Li ◽  
Feng Yang ◽  
Jin-Yin Luo ◽  
Xu-Rong Wang ◽  
...  

Background: Bovine mastitis, a serious disease associated with both high incidence and significant economic losses, posing a major challenge to the global dairy industry. The development of vaccines for protection from new infections by mastitis pathogens is of considerable interest to the milk production industry. Vaccination is a common and easy strategy for the control of infectious diseases, and the adjuvants used in the formulation is a critical factor for vaccine efficacy improvement. The main objective of the present study was to evaluate three different adjuvants for their ability to enhance immune responses of mice that vaccinated with Bovine Mastitis Multiple Vaccine.Materials, Methods & Results: The thymus and spleen index, the phagocytic ability of macrophage and the serum antibody levels of mice were detected after vaccination, respectively. The results showed that the thymus index, spleen index, and the phagocytic ability of macrophage of mice in Aluminum group exhibited a significant higher level (P < 0.05) compared with those in the control groups. The difference of the serum antibody levels was significant (P < 0.05) between experimental groups and control group after vaccination. The serum antibody concentration of mice in FIA group was higher compared with other groups and had a longer duration. The antibody concentration of mice in France 206 oil group can not increase as fast as the antibody concentration of Aluminum group, but it can last a longer time at a high level. In conclusion, multiple vaccines mixed with three different adjuvants could enhance the immunity of mice and Freund’s incomplete adjuvant is the best choice for this vaccine.Discussion: Adjuvants play an important role in increasing the efficacy of a number of different vaccines. In this study, three kinds of adjuvants (Aluminum hydroxide, France 206 oil and FIA) were evaluated for their adjuvant effects for multiple vaccine of bovine mastitis in mice and aluminum hydroxide did best as the vaccine adjuvant from the results. Aluminum hydroxide is a universally accepted adjuvant for both human and veterinary vaccines. The goal of vaccination is to generate strong immune response providing protection against infection for a time. Different protective effects will usually obtained by different adjuvants even use same antigen. In this work, FIA, Alum and 206 oil were chosen as adjuvants for inactivated antigens of Streptococcus agalactiae, Streptococcus dysgalactiae and Staphylococcus aureus. The results showed that there was a significantly higher antibody levels in vaccinated mice compared with those in control group. In addition, the mice in France 206 oil and FIA group performed a higher antibody levels and stronger immunity than mice in Aluminum hydroxide groups. These findings suggest that Freund’s incomplete adjuvant (FIA) would be the best candidate as the adjuvant for mastitis multiple vaccines investigated in this study.


Author(s):  
T. Schmidt

Staphylococcus aureus is 1 of the most important causes of bovine mastitis and is responsible for significant economic losses to the dairy industry worldwide. One of the principal approaches used in treating intramammary infections is the administration of antimicrobials. Due to the propensity of S. aureus to develop resistance, antimicrobial susceptibility monitoring is necessary to ensure that treatment regimens are effective. As part of this investigation, 90 S. aureus strains isolated from mastitis cases submitted to Allerton Provincial Veterinary Laboratory during 2008 and 2009 were evaluated for their susceptibility to a panel of 10 antimicrobials. Only 8 of the 90 S. aureus isolates tested (8.9 %) were found to be susceptible to all of the antimicrobials evaluated. A very high level of resistance to the beta-lactam antibiotics was noted: 47.8 % of the isolates were resistant to penicillin and 65.6 % were resistant to ampicillin. Minimal resistance to oxacillin, cephalothin and trimethoprim-sulfamethoxazole (1.1 %) was found. Seventeen (18.9 %) of the isolates tested were found to be resistant to 3 or more antimicrobials. The need for vigilant monitoring of bacterial resistance trends in the dairy industry is warranted as the potential public health implications are significant.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Chen ◽  
Yongxia Liu ◽  
Jinhua Yin ◽  
Youtian Deng ◽  
Tariq Ali ◽  
...  

There is a need to identify and select new promising immunodominant antigens that have the ability to provide protective immunity againstE. colicausing bovine mastitis. Recently we showed thatf17awas found to be the most prevalent and crucial virulent factor among the pathogenicE. coliisolated from bovine mastitis. Here, in this report, the recombinant F17A based subunit vaccine adjuvant with MF59 was tested for immunogenicity againstE. coliin a murine model. The vaccinated mice did not show any abnormal behavioral changes and histopathological lesions after vaccination. The specific antibody level against F17A was significantly higher in MF59-adjuvant-group, and also lasted for longer duration with a significant(P<0.01)production level of IgG1 and IgG2a. Moreover, we noted higher survival rate in mice injected with F17A-MF59-adjuvant group after challenging with the clinicalE. colistrain.Our findings of bacterial clearance test revealed that elimination rate from liver, spleen, and kidney in MF59-adjuvant-group was significantly higher than the control group. Finally, the proportion of CD4+T cells was increased, while CD8+ was decreased in MF59-adjuvant group. In conclusion, the current study reveals the capability of F17A-MF59 as a potential vaccine candidate against pathogenicE. colicausing mastitis in dairy animals.


2021 ◽  
Vol 8 (9) ◽  
pp. 197
Author(s):  
Gustav Bruer ◽  
Daria Gödecke ◽  
Manfred Kietzmann ◽  
Jessica Meißner

The effect of florfenicol against Escherichia coli (E. coli) was investigated in vivo to confirm results of an in vitro study of Bruer et al. (2019), which has shown positive effects of various antibacterial agents in combination with the antihistamine mepyramine (MEP). Therefore, pigs were treated in three different settings: An untreated control group, 10 mg/kg florfenicol (FFC) and 10 mg/kg FFC in combination with 20 mg/kg MEP. E. coli were isolated from faecal samples and analyzed in growth quantity and resistance to FFC. The FFC medication induced an increased number of resistant E. coli strains isolated from faecal samples. The number of colonies detected after cultivation of animal samples treated with 10 mg/kg FFC was higher than the number of colonies after treatment with 10 mg/kg FFC in combination with of FFC and MEP. Furthermore, the effect of both compounds was examined on bacterial susceptibility of Pasteurella multocida in vitro, where the combination of FFC with MEP resulted in a diminished minimum inhibitory concentration. We confirmed the development of bacterial resistance in the intestine as non-target tissue caused by the use of the antibacterial agent florfenicol. Moreover, the combination of FFC with an antihistamine like MEP offers a possibility to enhance the efficacy of an antibacterial treatment and modifies the effect on gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document