Effects of three-dimensional soil heterogeneity on seed germination in controlled experiments

2020 ◽  
Vol 14 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Yongjie Liu ◽  
Fujiang Hou

Abstract Aims Seed germinations react to their local growing conditions, but the impacts of soil heterogeneity on seed germinations are not well known. Methods Effects of three-dimensional soil heterogeneity on seed germinations of grasses species were explored, where two levels of such soil heterogeneity were created via alternatively filling nutrient-poor and nutrient-rich substrate in pot in all directions. Patch sizes of the two heterogeneity levels are around 7.5 and 15 cm, respectively. Fifty seeds of each of the grasses species (Lolium perenne and Elymus nutans) were set either in these heterogeneous soils or in petri dishes with distilled water. Seed germinations of these species were daily recorded. Important Findings We found that pots with smaller patches had relatively lower germination rate, which is consistent with our expectation that shorter distance between nutrient-rich and nutrient-poor patches in pots with smaller patches allows plants to reduce their germination rates and delay their germination, in order to reduce the negative impacts of the strong variation of soil resources in these pots. Our results also revealed that pots with smaller patches yielded more heterogeneous seed germination, i.e. seed germinations highly diverged among these pots. These findings highlight that the realistic three-dimensional design can improve our understanding of seed germination as driven by soil spatial heterogeneity.

Oikos ◽  
2021 ◽  
Author(s):  
Yongjie Liu ◽  
Michiel F. Bortier ◽  
Ivan Nijs ◽  
Yongshuo Fu ◽  
Zhenqing Li ◽  
...  

Helia ◽  
2000 ◽  
Vol 23 (33) ◽  
pp. 97-104
Author(s):  
F.M. Khalifa ◽  
A.A. Schneiter ◽  
E.I. El Tayeb

SUMMARY Seed germination of six sunflower (Helianthus annuus L.) hybrids was investigated across a range of eleven constant temperatures between 5°C and 45°C. Large temperature differences in germination rate 1/t (d-1), cardinal temperature (°C) and thermal time θ (°cd) were observed among hybrids. Base temperatures (Tb) varied between 3.3°C and 6.7°C whereas maximum germination temperatures (Tm) varied between 41.7°C and 48.9°C. Final germination fraction was attained at 15°C - 25°C whereas the maximum rate of germination was attained at 30.4°C - 35.6°C. The maximum germination rate of hybrid USDA 894, the cultivar with the slowest germination rate, was only 50% of that of hybrid EX 47. The low Tb and high Tm of sunflower appear to be one of the factors which explain the successful adaptation of sunflower to a wide range of temperature. These findings are discussed in relation to the origin of the crop and its wide adaptations in diverse habitats and climatic zones.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 182
Author(s):  
Junsik Ahn ◽  
Soyeon Oh ◽  
Yang Joo Kang ◽  
KiBum Kim ◽  
Sung-Kwon Moon ◽  
...  

Peanut (Arachis hypogaea L.) seeds were germinated to investigate the effect of the fermentation period of oak tree sawdust on germination viability and seedling characteristics. Its germination rate, seedling weight, length, and total vigor index were assessed. The seeds were sown in oak tree sawdust fermented for 0, 30, 45, and 60 days. The germination rates of the seeds in fermented sawdust were significantly different. The seeds in the 45-day fermented sawdust produced the heaviest biomass weight (4.6 g) with the longest true leaf (1.7 cm) and hypocotyl (3.4 cm) resulting in the highest total vigor index (925.8). In contrast, seeds in 0-day fermented sawdust had the lowest total vigor index (18.3). Microbiome analysis showed that the microbial community in the sawdust changed as the fermentation progressed, indicating that the microbial community seems to affect seed germination physiology. Taken together, 45-day fermented sawdust is recommended for optimal peanut seed germination and seedling growth.


2021 ◽  
pp. 105065192110214
Author(s):  
Michelle McMullin ◽  
Bradley Dilger

Academic work increasingly involves creating digital tools with interdisciplinary teams distributed across institutions and roles. The negative impacts of distributed work are described at length in technical communication scholarship, but such impacts have not yet been realized in collaborative practices. By integrating attention to their core ethical principles, best practices, and work patterns, the authors are developing an ethical, sustainable approach to team building that they call constructive distributed work. This article describes their integrated approach, documents the best practices that guide their research team, and models the three-dimensional thinking that helps them develop sustainable digital tools and ensure the consistent professional development of all team members.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1076
Author(s):  
Döme Barna ◽  
Szilvia Kisvarga ◽  
Szilvia Kovács ◽  
Gábor Csatári ◽  
Ibolya O. Tóth ◽  
...  

Organic and ecological farming programs require new and efficient biostimulants with beneficial properties for the sustainable and safe production of seedlings and ornamental plants. We examined the effect of non-fermented and lacto-fermented alfalfa brown juice (BJ) on seed germination and the vegetative, physiological, and anatomical properties of French marigold (Tagetes patula L. ‘Csemő’) plants which were treated with 0.5–10% fermented and non-fermented BJ, with tap water applied as a control. Applying 0.5% fermented BJ significantly improved seed germination compared with non-fermented BJ, resulting in an increase of 9.6, 11.2, 10.9, and 41.7% in the final germination percent, germination rate index, germination index, and vigor index, respectively. In addition, it increased the root and shoot length by 7.9 and 16.1%, respectively, root and shoot dry mass by 20 and 47.6%, respectively, and the number of leaves by 28.8% compared to the control. Furthermore, an increase in contents of water-soluble phenol, chlorophyll a and b, and carotenoid was reported upon the application of 0.5% fermented BJ, while peroxidase activity decreased. Our results prove that alfalfa BJ can be enrolled as a biostimulant as part of the circular farming approach which supports the sustainable horticultural practice.


Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 968-975 ◽  
Author(s):  
Robert S. Gallagher ◽  
Kathryn J. Steadman ◽  
Andrew D. Crawford

The effect of hydration (priming) treatment on dormancy release in annual ryegrass seeds from two populations was investigated. Hydration duration, number, and timing with respect to after-ripening were compared in an experiment involving 15 treatment regimens for 12 wk. Seeds were hydrated at 100% relative humidity for 0, 2, or 10 d at Weeks 1, 6, or 12 of after-ripening. Dormancy status was assessed after each hydration treatment by measuring seed germination at 12-hourly alternating 25/15 C (light/dark) periods using seeds directly from the hydration treatment and seeds subjected to 4 d postpriming desiccation. Seeds exposed to one or more hydration events during the 12 wk were less dormant than seeds that remained dry throughout after-ripening. The longer hydration of 10 d promoted greater dormancy loss than either a 2-d hydration or no hydration. For the seed lot that was most dormant at the start of the experiment, two or three rather than one hydration event or a hydration event earlier rather than later during after-ripening promoted greater dormancy release. These effects were not significant for the less-dormant seed lot. For both seed lots, the effect of a single hydration for 2 d at Week 1 or 6 of after-ripening was not manifested until the test at Week 12 of the experiment, suggesting that the hydration events alter the rate of dormancy release during subsequent after-ripening. A hydrothermal priming time model, usually used for modeling the effect of priming on germination rate of nondormant seeds, was successfully applied to dormancy release resulting from the hydration treatments.


1992 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
L Valbuena ◽  
R Tarrega ◽  
E Luis

The influence of high temperatures on germination of Cistus laurifolius and Cistus ladanifer seeds was analyzed. Seeds were subjected to different temperatures for different times, afterwards they were sowed in plastic petri dishes and monitored for germinated seeds over two months.The germination rate observed in Cistus ldanifer was greater than in Cistus laurifolius. In both species, heat increased germination percentages. For Cistus laurifolius higher temperatures or longer exposure times were needed. Germination percentages of Cistus ladanifer were lower when heat exposure time was 15 minutes.It must be emphasized that germination occurred when seeds were not treated, while seeds exposed to 150�C for 5 minutes or more did not germinate.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 419
Author(s):  
Siaka Dembélé ◽  
Robert B. Zougmoré ◽  
Adama Coulibaly ◽  
John P. A. Lamers ◽  
Jonathan P. Tetteh

Agriculture in Mali, a country in Sahelian West Africa, strongly depends on rainfall and concurrently has a low adaptive capacity, making it consequently one of the most vulnerable regions to climate change worldwide. Since early-season drought limits crop germination, and hence growth, ultimately yield during rain-fed depending on production is commonly experienced nowadays in Mali. Germination and establishment of key crops such as the staple sorghum could be improved by seed priming. The effects of hydro-priming with different water sources (e.g., distilled, tap, rain, river, well water) were evaluated respectively for three priming time durations in tepid e.g., at 25 °C (4, 8, and 12 h) and by hot water at 70 °C (in contrast to 10, 20, and 30 min.) in 2014 and 2015. Seed germination and seedling development of nine sorghum genotypes were monitored. Compared to non-primed seed treatments, hydro-priming significantly [p = 0.01] improved final germination percentage, germination rate index, total seedling length, root length, root vigor index, shoot length, and seedling dry weight. The priming with water from wells and rivers resulted in significant higher seed germination (85%) and seedling development, compared to the three other sources of water. Seed germination rate, uniformity, and speed were enhanced by hydro-priming also. It is argued that hydro-priming is a safe and simple method that effectively improve seed germination and seedling development of sorghum. If used in crop fields, the above most promising genotypes may contribute to managing early season drought and avoid failure of seed germination and crop failure in high climate variability contexts.


Sign in / Sign up

Export Citation Format

Share Document