scholarly journals Revisiting floral fusion: the evolution and molecular basis of a developmental innovation

2020 ◽  
Vol 71 (12) ◽  
pp. 3390-3404 ◽  
Author(s):  
Heather R Phillips ◽  
Jacob B Landis ◽  
Chelsea D Specht

Abstract Throughout the evolution of the angiosperm flower, developmental innovations have enabled the modification or elaboration of novel floral organs enabling subsequent diversification and expansion into new niches, for example the formation of novel pollinator relationships. One such developmental innovation is the fusion of various floral organs to form complex structures. Multiple types of floral fusion exist; each type may be the result of different developmental processes and is likely to have evolved multiple times independently across the angiosperm tree of life. The development of fused organs is thought to be mediated by the NAM/CUC3 subfamily of NAC transcription factors, which mediate boundary formation during meristematic development. The goal of this review is to (i) introduce the development of fused floral organs as a key ‘developmental innovation’, facilitated by a change in the expression of NAM/CUC3 transcription factors; (ii) provide a comprehensive overview of floral fusion phenotypes amongst the angiosperms, defining well-known fusion phenotypes and applying them to a systematic context; and (iii) summarize the current molecular knowledge of this phenomenon, highlighting the evolution of the NAM/CUC3 subfamily of transcription factors implicated in the development of fused organs. The need for a network-based analysis of fusion is discussed, and a gene regulatory network responsible for directing fusion is proposed to guide future research in this area.

2021 ◽  
Vol 22 (8) ◽  
pp. 4167
Author(s):  
Xiaonan Sun ◽  
Jalen Alford ◽  
Hongyu Qiu

Mitochondria undergo structural and functional remodeling to meet the cell demand in response to the intracellular and extracellular stimulations, playing an essential role in maintaining normal cellular function. Merging evidence demonstrated that dysregulation of mitochondrial remodeling is a fundamental driving force of complex human diseases, highlighting its crucial pathophysiological roles and therapeutic potential. In this review, we outlined the progress of the molecular basis of mitochondrial structural and functional remodeling and their regulatory network. In particular, we summarized the latest evidence of the fundamental association of impaired mitochondrial remodeling in developing diverse cardiac diseases and the underlying mechanisms. We also explored the therapeutic potential related to mitochondrial remodeling and future research direction. This updated information would improve our knowledge of mitochondrial biology and cardiac diseases’ pathogenesis, which would inspire new potential strategies for treating these diseases by targeting mitochondria remodeling.


2019 ◽  
Vol 180 (3) ◽  
pp. 1740-1755 ◽  
Author(s):  
Philippa Borrill ◽  
Sophie A. Harrington ◽  
James Simmonds ◽  
Cristobal Uauy

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yaling Feng ◽  
Jianxia Wang ◽  
Yue He ◽  
Heng Zhang ◽  
Minhui Jiang ◽  
...  

Abstract The present study aimed to unravel the molecular basis underlying PAX3 down-regulation, known to be involved in pre-eclampsia (PE) occurrence and development. Data obtained from databases suggested that Pax3 methylation levels in the promoter region are high in the placentas of PE patients. However, the expression of methylation-adjusting enzymes, including DNMT1, LSD1, and EZH2, did not change. Since lncRNAs enhance the function of methylation-related enzymes independently of expression, we selected three lncRNAs, RP11-269F21.2, DIAPH2-AS1, and RP11-445K13.2, predicted to interact with methylation-adjusting enzymes. Two transcription factors, HOXD8 and Lhx3, predicted to regulate the expression of lncRNAs, were also selected. Using RNA interference technology, HOXD8 and Lhx3 were found to positively regulate DIAPH2-AS1 and RP11-445K13.2 in HTR-8/SVneo cells. Chromatin immunoprecipitation assays determined that DIAPH2-AS1 recruited LSD1 to histone 3, increasing DNMT1 stability at H3. The HOXD8/DIAPH2-AS1 network regulated HTR-8/SVneo cell function under hypoxia by epigenetically regulating PAX3. This regulatory network may thus be responsible for PAX3 down-regulation in the placentas of PE patients.


2011 ◽  
Vol 240 (9) ◽  
pp. spcone-spcone
Author(s):  
Diana S. José-Edwards ◽  
Pierre Kerner ◽  
Jamie E. Kugler ◽  
Wei Deng ◽  
Di Jiang ◽  
...  

2018 ◽  
Author(s):  
Philippa Borrill ◽  
Sophie A. Harrington ◽  
James Simmonds ◽  
Cristobal Uauy

AbstractSenescence is a tightly regulated developmental programme which is coordinated by transcription factors. Identifying these transcription factors in crops will provide opportunities to tailor the senescence process to different environmental conditions and regulate the balance between yield and grain nutrient content. Here we use ten time points of gene expression data alongside gene network modelling to identify transcription factors regulating senescence in polyploid wheat. We observe two main phases of transcription changes during senescence: early downregulation of housekeeping and metabolic processes followed by upregulation of transport and hormone related genes. We have identified transcription factor families associated with these early and later waves of differential expression. Using gene regulatory network modelling alongside complementary publicly available datasets we identified candidate transcription factors for controlling senescence. We validated the function of one of these candidate transcription factors in senescence using wheat chemically-induced mutants. This study lays the ground work to understand the transcription factors which regulate senescence in polyploid wheat and exemplifies the integration of time-series data with publicly available expression atlases and networks to identify candidate regulatory genes.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1994
Author(s):  
Elizabeth Ramage ◽  
Valerie L. Soza ◽  
Jing Yi ◽  
Haley Deal ◽  
Vaidehi Chudgar ◽  
...  

Bilaterally symmetric flowers have evolved over a hundred times in angiosperms, yet orthologs of the transcription factors CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) are repeatedly implicated in floral symmetry changes. We examined these candidate genes to elucidate the genetic underpinnings of floral symmetry changes in florally diverse Rhododendron, reconstructing gene trees and comparing gene expression across floral organs in representative species with radial and bilateral flower symmetries. Radially symmetric R. taxifolium Merr. and bilaterally symmetric R. beyerinckianum Koord. had four and five CYC orthologs, respectively, from shared tandem duplications. CYC orthologs were expressed in the longer dorsal petals and stamens and highly expressed in R. beyerinckianum pistils, whereas they were either ubiquitously expressed, lost from the genome, or weakly expressed in R. taxifolium. Both species had two RAD and DIV orthologs uniformly expressed across all floral organs. Differences in gene structure and expression of Rhododendron RAD compared to other asterids suggest that these genes may not be regulated by CYC orthologs. Our evidence supports CYC orthologs as the primary regulators of differential organ growth in Rhododendron flowers, while also suggesting certain deviations from the typical asterid gene regulatory network for flower symmetry.


2020 ◽  
Author(s):  
Aurélie Pirayre ◽  
Laurent Duval ◽  
Corinne Blugeon ◽  
Cyril Firmo ◽  
Sandrine Perrin ◽  
...  

Abstract Background: The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei . Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network.Results: Experimental results confirmed the impact of sugar mixture on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using the BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth.Conclusions: This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1 , clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains.


Sign in / Sign up

Export Citation Format

Share Document