scholarly journals Recent advances in the regulation of plant immunity by S-nitrosylation

Author(s):  
Jibril Lubega ◽  
Saima Umbreen ◽  
Gary J Loake

Abstract S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine (Cys) thiol, to form a protein S-nitrosothiol (SNO), is emerging as a key regulatory post-translational modification (PTM) to control the plant immune response. NO also S-nitrosylates the antioxidant tripeptide, glutathione, to form S-nitrosoglutathione (GSNO), both a storage reservoir of NO bioactivity and a natural NO donor. GSNO and, by extension, S-nitrosylation, are controlled by GSNO reductase1 (GSNOR1). The emerging data suggest that GSNOR1 itself is a target of NO-mediated S-nitrosylation, which subsequently controls its selective autophagy, regulating cellular protein SNO levels. Recent findings also suggest that S-nitrosylation may be deployed by pathogen-challenged host cells to counteract the effect of delivered microbial effector proteins that promote pathogenesis and by the pathogens themselves to augment virulence. Significantly, it also appears that S-nitrosylation may regulate plant immune functions by controlling SUMOylation, a peptide-based PTM. In this context, global SUMOylation is regulated by S-nitrosylation of SUMO conjugating enzyme 1 (SCE1) at Cys139. This redox-based PTM has also been shown to control the function of a key zinc finger transcriptional regulator during the establishment of plant immunity. Here, we provide an update of these recent advances.

2011 ◽  
Vol 24 (5) ◽  
pp. 585-593 ◽  
Author(s):  
Shujing Wu ◽  
Dongping Lu ◽  
Mehdi Kabbage ◽  
Hai-Lei Wei ◽  
Bryan Swingle ◽  
...  

Many bacterial pathogens inject a cocktail of effector proteins into host cells through type III secretion systems. These effectors act in concert to modulate host physiology and immune signaling, thereby promoting pathogenicity. In a search for additional Pseudomonas syringae effectors in suppressing plant innate immunity triggered by pathogen or microbe-associated molecular patterns (PAMPs or MAMPs), we identified P. syringae tomato DC3000 effector HopF2 as a potent suppressor of early immune-response gene transcription and mitogen-activated protein kinase (MAPK) signaling activated by multiple MAMPs, including bacterial flagellin, elongation factor Tu, peptidoglycan, lipopolysaccharide and HrpZ1 harpin, and fungal chitin. The conserved surface-exposed residues of HopF2 are essential for its MAMP suppression activity. HopF2 is targeted to the plant plasma membrane through a putative myristoylation site, and the membrane association appears to be required for its MAMP-suppression function. Expression of HopF2 in plants potently diminished the flagellin-induced phosphorylation of BIK1, a plasma membrane–associated cytoplasmic kinase that is rapidly phosphorylated within one minute upon flagellin perception. Thus, HopF2 likely intercepts MAMP signaling at the plasma membrane immediately of signal perception. Consistent with the potent suppression function of multiple MAMP signaling, expression of HopF2 in transgenic plants compromised plant nonhost immunity to bacteria P. syringae pv. Phaseolicola and plant immunity to the necrotrophic fungal pathogen Botrytis cinerea.


2019 ◽  
Vol 61 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Manuel A Matamoros ◽  
Maria C Cutrona ◽  
Stefanie Wienkoop ◽  
Juan C Begara-Morales ◽  
Niels Sandal ◽  
...  

Abstract Nitric oxide (NO) is a crucial signaling molecule that conveys its bioactivity mainly through protein S-nitrosylation. This is a reversible post-translational modification (PTM) that may affect protein function. S-nitrosoglutathione (GSNO) is a cellular NO reservoir and NO donor in protein S-nitrosylation. The enzyme S-nitrosoglutathione reductase (GSNOR) degrades GSNO, thereby regulating indirectly signaling cascades associated with this PTM. Here, the two GSNORs of the legume Lotus japonicus, LjGSNOR1 and LjGSNOR2, have been functionally characterized. The LjGSNOR1 gene is very active in leaves and roots, whereas LjGSNOR2 is highly expressed in nodules. The enzyme activities are regulated in vitro by redox-based PTMs. Reducing conditions and hydrogen sulfide-mediated cysteine persulfidation induced both activities, whereas cysteine oxidation or glutathionylation inhibited them. Ljgsnor1 knockout mutants contained higher levels of S-nitrosothiols. Affinity chromatography and subsequent shotgun proteomics allowed us to identify 19 proteins that are differentially S-nitrosylated in the mutant and the wild-type. These include proteins involved in biotic stress, protein degradation, antioxidant protection and photosynthesis. We propose that, in the mutant plants, deregulated protein S-nitrosylation contributes to developmental alterations, such as growth inhibition, impaired nodulation and delayed flowering and fruiting. Our results highlight the importance of GSNOR function in legume biology.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Plinio S. Vieira ◽  
Isabela M. Bonfim ◽  
Evandro A. Araujo ◽  
Ricardo R. Melo ◽  
Augusto R. Lima ◽  
...  

AbstractXyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.


Amino Acids ◽  
2021 ◽  
Author(s):  
Dimitrios Tsikas

AbstractNitrosylation of sulfhydryl (SH) groups of cysteine (Cys) moieties is an important post-translational modification (PTM), often on a par with phosphorylation. S-Nitrosoalbumin (ALB-Cys34SNO; SNALB) in plasma and S-nitrosohemoglobin (Hb-Cysβ93SNO; HbSNO) in red blood cells are considered the most abundant high-molecular-mass pools of nitric oxide (NO) bioactivity in the human circulation. SNALB per se is not an NO donor. Yet, it acts as a vasodilator and an inhibitor of platelet aggregation. SNALB can be formed by nitrosation of the sole reduced Cys group of albumin (Cys34) by nitrosating species such as nitrous acid (HONO) and nitrous anhydride (N2O3), two unstable intermediates of NO autoxidation. SNALB can also be formed by the transfer (S-transnitrosylation) of the nitrosyl group (NO+) of a low-molecular-mass (LMM) S-nitrosothiol (RSNO) to ALB-Cys34SH. In the present study, the effects of LMM thiols on the inhibitory potential of ALB-Cys34SNO on human washed platelets were investigated. ALB-Cys34SNO was prepared by reacting n-butylnitrite with albumin after selective extraction from plasma of a healthy donor on HiTrapBlue Sepharose cartridges. ALB-Cys34SNO was used in platelet aggregation measurements after extended purification on HiTrapBlue Sepharose and enrichment by ultrafiltration (cutoff, 20 kDa). All tested LMM cysteinyl thiols (R-CysSH) including l-cysteine and L-homocysteine (at 10 µM) were found to mediate the collagen-induced (1 µg/mL) aggregation of human washed platelets by SNALB (range, 0–10 µM) by cGMP-dependent and cGMP-independent mechanisms. The LMM thiols themselves did not affect platelet aggregation. It is assumed that the underlying mechanism involves S-transnitrosylation of SH groups of the platelet surface by LMM RSNO formed through the reaction of SNALB with the thiols: ALB-Cys34SNO + R-CysSH ↔ ALB-Cys34SH + R-CysSNO. Such S-transnitrosylation reactions may be accompanied by release of NO finally resulting in cGMP-dependent and cGMP-independent mechanisms.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1086
Author(s):  
Francois Helle ◽  
Lynda Handala ◽  
Marine Bentz ◽  
Gilles Duverlie ◽  
Etienne Brochot

Extracellular vesicles have recently emerged as a novel mode of viral transmission exploited by naked viruses to exit host cells through a nonlytic pathway. Extracellular vesicles can allow multiple viral particles to collectively traffic in and out of cells, thus enhancing the viral fitness and diversifying the transmission routes while evading the immune system. This has been shown for several RNA viruses that belong to the Picornaviridae, Hepeviridae, Reoviridae, and Caliciviridae families; however, recent studies also demonstrated that the BK and JC viruses, two DNA viruses that belong to the Polyomaviridae family, use a similar strategy. In this review, we provide an update on recent advances in understanding the mechanisms used by naked viruses to hijack extracellular vesicles, and we discuss the implications for the biology of polyomaviruses.


2014 ◽  
Vol 70 (a1) ◽  
pp. C826-C826
Author(s):  
Abbas Maqbool ◽  
Richard Richard ◽  
Tolga Bozkurt ◽  
Yasin Dagdas ◽  
Khaoula Belhai ◽  
...  

Autophagy is a catabolic process involving degradation of dysfunctional cytoplasmic components to ensure cellular survival under starvation conditions. The process involves formation of double-membrane vesicles called autophagosomes and delivery of the inner constituents to lytic compartments. It can also target invading pathogens, such as intracellular bacteria, for destruction and is thus implicated in innate immune pathways [1]. In response, certain mammalian pathogens deliver effector proteins into host cells that inhibit autophagy and contribute to enabling parasitic infection [2]. Pyhtophthora infestans, the Irish potato famine pathogen, is a causative agent of late blight disease in potato and tomato crops. It delivers a plethora of modular effector proteins into plant cells to promote infection. Once inside the cell, RXLR-type effector proteins engage with host cell proteins, to manipulate host cell physiology for the benefit of the pathogen. As plants lack an adaptive immune system, this provides a robust mechanism for pathogens to circumvent host defense. PexRD54 is an intracellular RXLR-type effector protein produced by P. infestans. PexRD54 interacts with potato homologues of autophagy protein ATG8 in plant cells. We have been investigating the structural and biochemical basis of the PexRD54/ATG8 interaction in vitro. We have purified PexRD54 and ATG8 independently and in complex from E. coli. Using protein/protein interaction studies we have shown that PexRD54 binds ATG8 with sub-micromolar affinity. We have also determined the structure of PexRD54 in the presence of ATG8. This crystal structure provides key insights into how the previously reported WY-fold of oomycete RXLR-type effectors [3] can be organized in multiple repeats. The structural data also provides insights into the interaction between PexRD54 and ATG8, suggesting further experiments to understand the impact of this interaction on host cell physiology and how this benefits the pathogen.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ping-Ho Chen ◽  
Yaw-Syan Fu ◽  
Yun-Ming Wang ◽  
Kun-Han Yang ◽  
Danny Ling Wang ◽  
...  

Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid methyl ester (FA-OMe), and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK), and protein kinase B (Akt). By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN) with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.


1995 ◽  
Vol 43 (6) ◽  
pp. 563-570 ◽  
Author(s):  
X He ◽  
L Shen ◽  
A Bjartell ◽  
J Malm ◽  
H Lilja ◽  
...  

Protein C is a vitamin K-dependent protein circulating in plasma as a zymogen to an anticoagulant serine protease. After its activation, protein C cleaves and inactivates coagulation factors Va and VIIIa. Human protein C is synthesized in liver and undergoes extensive post-translational modification during its synthesis. Recently, the protein C inhibitor was demonstrated to be synthesized in several organs of the human male reproductive tract. Moreover, vitamin K-dependent protein S, which functions as a co-factor to activated protein C, was found to be synthesized in the Leydig cells of human testis. The aim of this study was to elucidate whether the protein C gene is also expressed in the male reproductive system. Specific immunostaining of protein C was found in Leydig cells of human testis, in the excretory epithelium of epididymis, and in some epithelial glands of the prostate, whereas no immunostaining was detected in seminal vesicles. Northern blotting and non-radioactive in situ hybridization demonstrated protein C mRNA in Leydig cells, in the excretory epithelium of epididymis, and in some of the epithelial glands of the prostate. The mRNA was distributed perinuclearly and the localization was in accordance with the specific immunostaining for protein C. The epithelium of epididymis was also found to contain both protein S mRNA and immunoreactivity. The demonstration of both protein C and protein S immunoreactivities, as well as their mRNAs, in male reproductive tissues suggests as yet unknown local functions for these proteins.


2008 ◽  
Vol 191 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Andreas K. J. Veenendaal ◽  
Charlotta Sundin ◽  
Ariel J. Blocker

ABSTRACT Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.


Sign in / Sign up

Export Citation Format

Share Document