Genetic insights into natural variation underlying salt tolerance in wheat

Author(s):  
Long Li ◽  
Zhi Peng ◽  
Xinguo Mao ◽  
Jingyi Wang ◽  
Chaonan Li ◽  
...  

Abstract Developing salt-tolerant crop varieties is one of the important approaches to cope with increasing soil salinization worldwide. In this study, a diversity panel of 323 wheat accessions and 150 doubled haploid lines were phenotyped for salt-responsive morphological and physiological traits across two growth stages. The comprehensive salt tolerance of each wheat accession was evaluated based on principal component analysis. A total of 269 associated loci for salt-responsive traits and/or salt tolerance indices were identified by genome-wide association studies using 395 675 single nucleotide polymorphisms, among which 22 overlapping loci were simultaneously identified by biparental quantitative trait loci mapping. Two novel candidate genes ROOT NUMBER 1 (TaRN1) and ROOT NUMBER 2 (TaRN2) involved in root responses to salt stress fell within overlapping loci, showing different expression patterns and a frameshift mutation (in TaRN2) in contrasting salt-tolerant wheat genotypes. Moreover, the decline in salt tolerance of Chinese wheat varieties was observed from genetic and phenotypic data. We demonstrate that a haplotype controlling root responses to salt stress has been diminished by strong selection for grain yield, which highlights that linkage drag constrains the salt tolerance of Chinese wheat. This study will facilitate salt-tolerant wheat breeding in terms of elite germplasm, favorable alleles and selection strategies.

Author(s):  
Pavli OI ◽  
◽  
Kempapidis K ◽  
Maggioros L ◽  
Foti C ◽  
...  

Salinity is one of the most detrimental abiotic stresses leading to considerable yield and economic losses worldwide. Lettuce is a relatively salt sensitive species, thus placing the interest in the release of salt-tolerant cultivars to enhance production in saline soils. This study aimed at investigating the response of lettuce germplasm to salt stress at the germination and at the whole plant level and to examine possibilities of early selection for salt tolerant genotypes. Fifteen lettuce commercial varieties were initially screened for salt tolerance on the basis of seed germination and seedling growth potential under salt stress conditions (0, 50, 100, 150 mM NaCl). The in vitro evaluation revealed the existence of considerable genetic variation related to salt tolerance at germination and allowed for the classification of genotypes into tolerant, moderately tolerant and sensitive to salt stress. Based on this classification, six cultivars were assessed at the whole plant level using plant height, chlorophyll content and fresh and dry biomass weight as evaluation criteria. Overall findings point to the existence of a satisfactory association of genotype performance between germination and later growth stages, thus suggesting the feasibility of screening for salt tolerance at early growth stages. This approach may considerably upgrade the efficiency of selecting suitable germplasm material for cultivation in saline soils or introgression into relevant breeding programs.


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


2018 ◽  
Vol 19 (11) ◽  
pp. 3412 ◽  
Author(s):  
Fenjuan Shao ◽  
Lisha Zhang ◽  
Iain Wilson ◽  
Deyou Qiu

Soil salinization is a matter of concern worldwide. It can eventually lead to the desertification of land and severely damage local agricultural production and the ecological environment. Betula halophila is a tree with high salt tolerance, so it is of importance to understand and discover the salt responsive genes of B. halophila for breeding salinity resistant varieties of trees. However, there is no report on the transcriptome in response to salt stress in B. halophila. Using Illumina sequencing platform, approximately 460 M raw reads were generated and assembled into 117,091 unigenes. Among these unigenes, 64,551 unigenes (55.12%) were annotated with gene descriptions, while the other 44.88% were unknown. 168 up-regulated genes and 351 down-regulated genes were identified, respectively. These Differentially Expressed Genes (DEGs) involved in multiple pathways including the Salt Overly Sensitive (SOS) pathway, ion transport and uptake, antioxidant enzyme, ABA signal pathway and so on. The gene ontology (GO) enrichments suggested that the DEGs were mainly involved in a plant-type cell wall organization biological process, cell wall cellular component, and structural constituent of cell wall molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the top-four enriched pathways were ‘Fatty acid elongation’, ‘Ribosome’, ‘Sphingolipid metabolism’ and ‘Flavonoid biosynthesis’. The expression patterns of sixteen DEGs were analyzed by qRT-PCR to verify the RNA-seq data. Among them, the transcription factor AT-Hook Motif Nuclear Localized gene and dehydrins might play an important role in response to salt stress in B. halophila. Our results provide an important gene resource to breed salt tolerant plants and useful information for further elucidation of the molecular mechanism of salt tolerance in B. halophila.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254189
Author(s):  
Nazanin Amirbakhtiar ◽  
Ahmad Ismaili ◽  
Mohammad-Reza Ghaffari ◽  
Raheleh Mirdar Mansuri ◽  
Sepideh Sanjari ◽  
...  

Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in response to salinity stress to identify salinity stress-responsive genes and mechanisms. More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500 platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference genome for different samples. The data analysis led to the identification of 98819 genes, including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs) were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes. Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcription factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK signaling might be involved in salt tolerance. The expression patterns of nine DEGs were investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and susceptible cultivars, respectively. The obtained results were consistent with changes in transcript abundance found by RNA-sequencing in the tolerant cultivar. The results presented here could be utilized for salt tolerance enhancement in wheat through genetic engineering or molecular breeding.


2020 ◽  
Author(s):  
Razieh Kiani ◽  
Ahmad Arzani ◽  
S. A. M. Mirmohammady Meibody ◽  
Mehdi Rahimmalek ◽  
Khadijeh Razavi

AbstractAegilops cylindrica Host is one of the most salt-tolerant species in the Triticeae tribe. Amphidiploid plants derived from hybridization of ‘Roshan’ × Aegilops cylindrica and ‘Chinese Spring’ × Ae. cylindrica genotypes contrasting in salt tolerance were assessed for their morpho-physiological responses and the expression patterns of two genes related to ion homeostasis under 250 mM NaCl. Results showed that salt stress caused significant declines in both their morphological and phenological traits. Moreover, salt stress reduced not only their chlorophyll content but also their root and shoot K contents and K/Na ratios, while it led to significant enhancements in the remaining traits. Similar to Ae. cylindrica, the amphidiploids subjected to salt stress exhibited significantly higher H2O2 levels, root and shoot K contents, and root and shoot K/Na ratios accompanied by lower root and shoot Na contents and MDA concentrations when compared with the same traits in the wheat parents. Quantitative Real-Time PCR showed significant differential expression patterns of the NHX1 and HKT1;5 genes between the amphidiploids and their parents. The transcript level of HKT1;5 was found to be higher in the roots than in the shoots of both the amphidiploids and Ae. cylindrica while NHX1 exhibited a higher expression in the shoot tissues. The consistency of these data provides compelling support for the hypothesis that active exclusion of Na from the roots and elevated vacuolar sequestration of Na in the leaves might explain the declining Na levels in the shoots and roots of both the amphidiploids and Ae. cylindrica relative to those measured in wheat parents. It is concluded that the hybridized amphiploids are potentially valuable resources for salt improvement in bread wheat through the backcrossing approach.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2019 ◽  
Author(s):  
Wenbin Ye ◽  
Taotao Wang ◽  
Wei Wei ◽  
Shuaitong Lou ◽  
Faxiu Lan ◽  
...  

ABSTRACTSpartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used PacBio full-length single molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt-gradient experiments (0, 350, 500 and 800 mM NaCl). We systematically analyzed the gene expression diversity and deciphered possible roles of ion transporters, protein kinases and photosynthesis in salt tolerance. Moreover, the co-expression network analysis revealed several hub genes in salt stress regulatory networks, including protein kinases such as SaOST1, SaCIPK10 and three SaLRRs. Furthermore, high salt stress affected the gene expression of photosynthesis through down-regulation at the transcription level and alternative splicing at the post-transcriptional level. In addition, overexpression of two Spartina salt-tolerant genes SaHSP70-I and SaAF2 in Arabidopsis significantly promoted the salt tolerance of transgenic lines. Finally, we built the SAPacBio website for visualizing the full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes, and alternative splicing events in Spartina. Overall, this study sheds light on the high salt tolerance mechanisms of monocotyledonous-halophyte and demonstrates the potential of Spartina genes for engineering salt-tolerant plants.


2020 ◽  
Author(s):  
Houda Chelaifa ◽  
Manikandan Vinu ◽  
Massar Dieng ◽  
Youssef Idaghdour ◽  
Ayesha Hasan ◽  
...  

AbstractSoil salinity is an increasing threat to global food production systems. As such, there is a need for salt tolerant plant model systems in order to understand salt stress regulation and response. Salicornia bigelovii, a succulent obligatory halophyte, is one of the most salt tolerant plant species in the world. It possesses distinctive characteristics that make it a candidate plant model for studying salt stress regulation and tolerance, showing promise as an economical non-crop species that can be used for saline land remediation and for large-scale biofuel production. However, available S. bigelovii genomic and transcriptomic data are insufficient to reveal its molecular mechanism of salt tolerance. We performed transcriptome analysis of S. bigelovii flowers, roots, seeds and shoots tissues cultivated under desert conditions and irrigated with saline aquaculture effluent. We identified a unique set of tissue specific transcripts present in this non-model crop. A total of 66,943 transcripts (72.63%) were successfully annotated through the GO database with 18,321 transcripts (27.38%) having no matches to known transcripts. Excluding non-plant transcripts, differential expression analysis of 49,914 annotated transcripts revealed differentially expressed transcripts (DETs) between the four tissues and identified shoots and flowers as the most transcriptionally similar tissues relative to roots and seeds. The DETs between above and below ground tissues, with the exclusion of seeds, were primarily involved in osmotic regulation and ion transportation. We identified DETs between shoots and roots implicated in salt tolerance including SbSOS1, SbNHX, SbHKT6 upregulated in shoots relative to roots, while aquaporins (AQPs) were up regulated in roots. We also noted that DETs implicated in osmolyte regulation exhibit a different profile among shoots and roots. Our study provides the first report of a highly upregulated HKT6 from S. bigelovii shoot tissue. Furthermore, we identified two BADH transcripts with divergent sequence and tissue specific expression pattern. Overall, expression of the ion transport transcripts suggests Na+ accumulation in S. bigelovii shoots. Our data led to novel insights into transcriptional regulation across the four tissues and identified a core set of salt stress-related transcripts in S. bigelovii.


2018 ◽  
Author(s):  
Reza Shokri-Gharelo ◽  
Pouya Motie-Noparvar

Canola (Brassica napus L.) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as ‘salt-tolerant’, plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests where researchers should focus future studies.


Sign in / Sign up

Export Citation Format

Share Document