Rheumatology

Author(s):  
Drew Provan

This chapter examines the role of investigations in diagnosis, assessing disease activity, and monitoring treatment in rheumatic disease. It reviews the relevance of haematology and biochemistry tests in clinical context, including differential diagnosis of anaemia and cytopenia which may reflect the disease process, co-morbidity, or adverse drug effects. Bone biochemistry and markers are also described. Autoantibodies are important in diagnosis and prognosis in rheumatology. Interpretation of rheumatoid factor, anti-cyclic citrullinated peptide (CCP) antibodies, antinuclear antibodies (ANA), antineutrophil cytoplasmic antibodies (ANCA), extractable nuclear antigens (ENA), antiphospholipid antibodies, and also HLA-B27 is discussed. Arthrocentesis is a technique specific to rheumatology, and neurophysiology is useful in distinguishing neurological versus inflammatory muscle disease, in addition to nerve entrapment syndromes and neuropathies. The chapter also introduces the use of diagnostic imaging and early identification of inflammatory arthritis, including X-ray, ultrasound, magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT), nuclear medicine bone scintigraphy, and dual-energy X-ray absorptiometry (DXA).

2020 ◽  
Vol 10 (3) ◽  
pp. 114 ◽  
Author(s):  
Eva Ausó ◽  
Violeta Gómez-Vicente ◽  
Gema Esquiva

Alzheimer’s disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.


2019 ◽  
Vol 1 (1) ◽  
pp. 74-87
Author(s):  
Sergey Kozyrev ◽  
Daniil Korabelnikov ◽  
Vasiliy Pop ◽  
Vladimir Troyan ◽  
Oleg Rukavicyn

Extraosseous manifestations are found in less than 5% of patients with multiple myeloma. Involvement of the gastrointestinal system in the course of multiple myeloma (MM) is extremely rare. Imaging is required for correct staging, in the followup after treatment and is predictor of prognosis. Several imaging technologies are used for the diagnosis and management of patients with MM. Conventional radiography, computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine imaging - positron emission tomography (PET) combined with CT (PET/CT) and PET combined with MRI (PET/MRI) are all used in clarifying the extent of bone and soft tissue lesions in MM. The brief literature review on extramedullary lesions in MM and their imaging with recommendations is given. We describe the imaging in diagnostics and management of an rare case of secondary extramedullary plasmacytoma (EMP) in relapse involving the pancreas and duodenum with the bleeding in a patient with MM, IgA lambda, stage II, after 6-years treatment with chemotherapy, autologous peripheral blood stem cell transplantation and radiotherapy. EMP was detected by PET/CT before the appearance of obvious clinical signs, and then EMP was monitoring by PET/CT, X-ray and ultrasound.


2019 ◽  
Vol 14 (1) ◽  
pp. 102-113
Author(s):  
Andrew James Mehnert ◽  
Andrew Janke ◽  
Marco Gruwel ◽  
Wojtek James Goscinski ◽  
Thomas Close ◽  
...  

The National Imaging Facility (NIF) provides Australian researchers with state-of-the-art instrumentation—including magnetic resonance imaging (MRI), positron emission tomography (PET), X-ray computed tomography (CT) and multispectral imaging – and expertise for the characterisation of animals, plants and materials. To maximise research outcomes, as well as to facilitate collaboration and sharing, it is essential not only that the data acquired using these instruments be managed, curated and archived in a trusted data repository service, but also that the data itself be of verifiable quality. In 2017, several NIF nodes collaborated on a national project to define the requirements and best practices necessary to achieve this, and to establish exemplar services for both preclinical MRI data and clinical ataxia MRI data. In this paper we describe the project, its key outcomes, challenges and lessons learned, and future developments, including extension to other characterisation facilities and instruments/modalities.


2021 ◽  
Vol 11 (17) ◽  
pp. 7833
Author(s):  
Francesca Arezzo ◽  
Vera Loizzi ◽  
Daniele La Forgia ◽  
Marco Moschetta ◽  
Alberto Stefano Tagliafico ◽  
...  

Ovarian cancer (OC) is the second most common gynecological malignancy, accounting for about 14,000 deaths in 2020 in the US. The recognition of tools for proper screening, early diagnosis, and prognosis of OC is still lagging. The application of methods such as radiomics to medical images such as ultrasound scan (US), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) in OC may help to realize so-called “precision medicine” by developing new quantification metrics linking qualitative and/or quantitative data imaging to achieve clinical diagnostic endpoints. This narrative review aims to summarize the applications of radiomics as a support in the management of a complex pathology such as ovarian cancer. We give an insight into the current evidence on radiomics applied to different imaging methods.


Author(s):  
Siyamol Chirakkarottu ◽  
Sheena Mathew

Background: Medical imaging encloses different imaging techniques and processes to image the human body for medical diagnostic and treatment purposes. Hence it plays an important role to improve public health. The technological development in biomedical imaging specifically in X-ray, Computed Tomography (CT), nuclear ultrasound including Positron Emission Tomography (PET), optical and Magnetic Resonance Imaging (MRI) can provide valuable information unique to a person. Objective: In health care applications, the images are needed to be exchanged mostly over wireless medium. The diagnostic images with confidential information of a patient need to be protected from unauthorized access during transmission. In this paper, a novel encryption method is proposed to improve the security and integrity of medical images. Methods: Chaotic map along with DNA cryptography is used for encryption. The proposed method describes a two phase encryption of medical images. Results: Performance of the proposed method is also tested by various analysis metrics. Robustness of the method against different noises and attacks is analyzed. Conclusion: The results show that the method is efficient and well suitable to medical images.


2019 ◽  
Vol 12 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Laura Evangelista ◽  
Lea Cuppari ◽  
Luisa Bellu ◽  
Daniele Bertin ◽  
Mario Caccese ◽  
...  

Purpose: The aims of the present study were to: 1- critically assess the utility of L-3,4- dihydroxy-6-18Ffluoro-phenyl-alanine (18F-DOPA) and O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) Positron Emission Tomography (PET)/Computed Tomography (CT) in patients with high grade glioma (HGG) and 2- describe the results of 18F-DOPA and 18F-FET PET/CT in a case series of patients with recurrent HGG. Methods: We searched for studies using the following databases: PubMed, Web of Science and Scopus. The search terms were: glioma OR brain neoplasm and DOPA OR DOPA PET OR DOPA PET/CT and FET OR FET PET OR FET PET/CT. From a mono-institutional database, we retrospectively analyzed the 18F-DOPA and 18F-FET PET/CT of 29 patients (age: 56 ± 12 years) with suspicious for recurrent HGG. All patients underwent 18F-DOPA or 18F-FET PET/CT for a multidisciplinary decision. The final definition of recurrence was made by magnetic resonance imaging (MRI) and/or multidisciplinary decision, mainly based on the clinical data. Results: Fifty-one articles were found, of which 49 were discarded, therefore 2 studies were finally selected. In both the studies, 18F-DOPA and 18F-FET as exchangeable in clinical practice particularly for HGG patients. From our institutional experience, in 29 patients, we found that sensitivity, specificity and accuracy of 18F-DOPA PET/CT in HGG were 100% (95% confidence interval- 95%CI - 81-100%), 63% (95%CI: 39-82%) and 62% (95%CI: 39-81%), respectively. 18F-FET PET/CT was true positive in 4 and true negative in 4 patients. Sensitivity, specificity and accuracy for 18F-FET PET/CT in HGG were 100%. Conclusion: 18F-DOPA and 18F-FET PET/CT have a similar diagnostic accuracy in patients with recurrent HGG. However, 18F-DOPA PET/CT could be affected by inflammation conditions (false positive) that can alter the final results. Large comparative trials are warranted in order to better understand the utility of 18F-DOPA or 18F-FET PET/CT in patients with HGG.


2021 ◽  
Vol 11 (2) ◽  
pp. 535
Author(s):  
Mahbubunnabi Tamal

Quantification and classification of heterogeneous radiotracer uptake in Positron Emission Tomography (PET) using textural features (termed as radiomics) and artificial intelligence (AI) has the potential to be used as a biomarker of diagnosis and prognosis. However, textural features have been predicted to be strongly correlated with volume, segmentation and quantization, while the impact of image contrast and noise has not been assessed systematically. Further continuous investigations are required to update the existing standardization initiatives. This study aimed to investigate the relationships between textural features and these factors with 18F filled torso NEMA phantom to yield different contrasts and reconstructed with different durations to represent varying levels of noise. The phantom was also scanned with heterogeneous spherical inserts fabricated with 3D printing technology. All spheres were delineated using: (1) the exact boundaries based on their known diameters; (2) 40% fixed; and (3) adaptive threshold. Six textural features were derived from the gray level co-occurrence matrix (GLCM) using different quantization levels. The results indicate that homogeneity and dissimilarity are the most suitable for measuring PET tumor heterogeneity with quantization 64 provided that the segmentation method is robust to noise and contrast variations. To use these textural features as prognostic biomarkers, changes in textural features between baseline and treatment scans should always be reported along with the changes in volumes.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1232
Author(s):  
Eva Petrovova ◽  
Marek Tomco ◽  
Katarina Holovska ◽  
Jan Danko ◽  
Lenka Kresakova ◽  
...  

Biopolymer composites allow the creation of an optimal environment for the regeneration of chondral and osteochondral defects of articular cartilage, where natural regeneration potential is limited. In this experimental study, we used the sheep animal model for the creation of knee cartilage defects. In the medial part of the trochlea and on the medial condyle of the femur, we created artificial defects (6 × 3 mm2) with microfractures. In four experimental sheep, both defects were subsequently filled with the porous acellular polyhydroxybutyrate/chitosan (PHB/CHIT)-based implant. Two sheep had untreated defects. We evaluated the quality of the newly formed tissue in the femoral trochlea defect site using imaging (X-ray, Computer Tomography (CT), Magnetic Resonance Imaging (MRI)), macroscopic, and histological methods. Macroscopically, the surface of the treated regenerate corresponded to the niveau of the surrounding cartilage. X-ray examination 6 months after the implantation confirmed the restoration of the contour in the subchondral calcified layer and the advanced rate of bone tissue integration. The CT scan revealed a low regenerative potential in the bone zone of the defect compared to the cartilage zone. The percentage change in cartilage density at the defect site was not significantly different to the reference area (0.06–6.4%). MRI examination revealed that the healing osteochondral defect was comparable to the intact cartilage signal on the surface of the defect. Hyaline-like cartilage was observed in most of the treated animals, except for one, where the defect was repaired with fibrocartilage. Thus, the acellular, chitosan-based biomaterial is a promising biopolymer composite for the treatment of chondral and osteochondral defects of traumatic character. It has potential for further clinical testing in the orthopedic field, primarily with the combination of supporting factors.


2021 ◽  
Vol 11 (3) ◽  
pp. 236
Author(s):  
Pieter H. Nienhuis ◽  
Gijs D. van Praagh ◽  
Andor W. J. M. Glaudemans ◽  
Elisabeth Brouwer ◽  
Riemer H. J. A. Slart

Imaging is becoming increasingly important for the diagnosis of large vessel vasculitis (LVV). Atherosclerosis may be difficult to distinguish from LVV on imaging as both are inflammatory conditions of the arterial wall. Differentiating atherosclerosis from LVV is important to enable optimal diagnosis, risk assessment, and tailored treatment at a patient level. This paper reviews the current evidence of ultrasound (US), 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET), computed tomography (CT), and magnetic resonance imaging (MRI) to distinguish LVV from atherosclerosis. In this review, we identified a total of eight studies comparing LVV patients to atherosclerosis patients using imaging—four US studies, two FDG-PET studies, and two CT studies. The included studies mostly applied different methodologies and outcome parameters to investigate vessel wall inflammation. This review reports the currently available evidence and provides recommendations on further methodological standardization methods and future directions for research.


Sign in / Sign up

Export Citation Format

Share Document