scholarly journals Particle-In-Cell Simulations of the Cassini Spacecraft’s Interaction with Saturn’s Ionosphere during the Grand Finale

Author(s):  
Zeqi Zhang ◽  
Ravindra T Desai ◽  
Yohei Miyake ◽  
Hideyuki Usui ◽  
Oleg Shebanits

Abstract A surprising and unexpected phenomenon observed during Cassini’s Grand Finale was the spacecraft charging to positive potentials in Saturn’s ionosphere. Here, the ionospheric plasma was depleted of free electrons with negatively charged ions and dust accumulating up to over 95 % of the negative charge density. To further understand the spacecraft-plasma interaction, we perform a three dimensional Particle-In-Cell study of a model Cassini spacecraft immersed in plasma representative of Saturn’s ionosphere. The simulations reveal complex interaction features such as electron wings and a highly structured wake containing spacecraft-scale vortices. The results show how a large negative ion concentration combined with a large negative to positive ion mass ratio is able to drive the spacecraft to the observed positive potentials. Despite the high electron depletions, the electron properties are found as a significant controlling factor for the spacecraft potential together with the magnetic field orientation which induces a potential gradient directed across Cassini’s asymmetric body. This study reveals the global spacecraft interaction experienced by Cassini during the Grand Finale and how this is influenced by the unexpected negative ion and dust populations.

2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.


2014 ◽  
Vol 32 (10) ◽  
pp. 1207-1216 ◽  
Author(s):  
P. Janhunen

Abstract. Plasma brake is a thin, negatively biased tether that has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma-brake tether by a high-performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic-field orientation and plasma-ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar (i.e. smooth and not turbulent) when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case in which the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also correct an error in an earlier reference. According to the simulations, the predicted thrust of the plasma brake is large enough to make the method promising for low-Earth-orbit (LEO) satellite deorbiting. As a numerical example, we estimate that a 5 km long plasma-brake tether weighing 0.055 kg could produce 0.43 mN breaking force, which is enough to reduce the orbital altitude of a 260 kg object mass by 100 km over 1 year.


Author(s):  
David J. Harvey ◽  
Weston B. Struwe ◽  
Anna-Janina Behrens ◽  
Snezana Vasiljevic ◽  
Max Crispin

AbstractStructural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M – H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document