CBIO-27. INTEGRATED FUNCTIONAL AND MOLECULAR CHARACTERIZATION OF THE INTRINSIC APOPTOTIC MACHINERY IDENTIFIES THERAPEUTIC VULNERABILITIES IN GLIOBLASTOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi32-vi32
Author(s):  
Elizabeth Fernandez ◽  
Wilson Mia ◽  
Nicholas Bayley ◽  
Henan Zhu ◽  
Christopher Tse ◽  
...  

Abstract Molecular profiling frequently fails to predict therapeutic outcomes in cancer. This is in part due to the myriad of genetic alterations comprising a tumor which enable rapid rewiring of cancer signaling pathways. Functional profiling ascertains signaling dynamics and has emerged as an alternative method to predict drug responses. It is unknown whether incorporating molecular with functional profiling offers superior insight into specific tumor dependencies and consequently therapeutic susceptibilities. Here we performed integrated molecular and functional characterization (via BH3 profiling) of the intrinsic apoptotic machinery in 50 GBM patient specimens. We found that treatment with standard of care (e.g., temozolomide or radiation) rewired the apoptotic machinery in a p53 dependent manner, eliciting an exclusive survival dependency on BCL-xL in a genetically defined subset of GBM tumors. However, functional BH3 profiling of ‘apoptotic priming’ was required to predict response to combined IR/TMZ and BCL-xL inhibition in p53 WT GBM tumors. Accordingly, a composite of genetic and functional profiling predicted the response of patient derived GBM models to IR/TMZ with a novel GBM specific BCLxL antagonist. Collectively, these studies identify the mechanisms of intrinsic apoptosis resistance in GBM and demonstrate how functional and molecular data can be complementary to robustly predict therapy-induced cell death.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii21-ii21
Author(s):  
Elizabeth Fernandez ◽  
Wilson Mai ◽  
Nicholas Bayley ◽  
Christopher Tse ◽  
Linda Liau ◽  
...  

Abstract Resistance to apoptosis is a hallmark of cancer. However, the underlying molecular mechanisms of intrinsic-apoptotic resistance in glioblastoma (GBM) are largely unknown. Here we performed integrated molecular and functional characterization (via BH3 profiling) of the intrinsic apoptotic machinery in 50 GBM patient specimens. We found that, despite significant genetic heterogeneity of our GBM samples, all GBMs have a cross compensatory reliance on BCLXL and MCL1 for basal survival. Treatment with standard of care (e.g., temozolomide or radiation) caused minimal apoptosis, yet ablated the MCL-1 block in a p53-dependent manner, thus creating an exclusive dependence on BCLXL for survival in p53 wild-type GBM tumors (65% of GBM tumors). Consequently, BCLXL inhibition caused synergistic cell death with IR/TMZ in GBM tumors with intact p53 signaling. Importantly, the degree of synergistic cell kill was best predicted by combining molecular features with BH3 profiling, providing an integrated predictive signature of response to this novel therapeutic approach. Collectively, these studies identify mechanisms of intrinsic apoptosis resistance in both basal and treatment states of GBM and demonstrate how functional and molecular data can be complementary to robustly predict therapy-induced cell death.


2020 ◽  
Vol 132 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
Bryan D. Choi ◽  
Daniel K. Lee ◽  
Jimmy C. Yang ◽  
Caroline M. Ayinon ◽  
Christine K. Lee ◽  
...  

OBJECTIVEIntraoperative seizures during craniotomy with functional mapping is a common complication that impedes optimal tumor resection and results in significant morbidity. The relationship between genetic mutations in gliomas and the incidence of intraoperative seizures has not been well characterized. Here, the authors performed a retrospective study of patients treated at their institution over the last 12 years to determine whether molecular data can be used to predict the incidence of this complication.METHODSThe authors queried their institutional database for patients with brain tumors who underwent resection with intraoperative functional mapping between 2005 and 2017. Basic clinicopathological characteristics, including the status of the following genes, were recorded: IDH1/2, PIK3CA, BRAF, KRAS, AKT1, EGFR, PDGFRA, MET, MGMT, and 1p/19q. Relationships between gene alterations and intraoperative seizures were evaluated using chi-square and two-sample t-test univariate analysis. When considering multiple predictive factors, a logistic multivariate approach was taken.RESULTSOverall, 416 patients met criteria for inclusion; of these patients, 98 (24%) experienced an intraoperative seizure. Patients with a history of preoperative seizure and those treated with antiepileptic drugs prior to surgery were less likely to have intraoperative seizures (history: OR 0.61 [95% CI 0.38–0.96], chi-square = 4.65, p = 0.03; AED load: OR 0.46 [95% CI 0.26–0.80], chi-square = 7.64, p = 0.01). In a univariate analysis of genetic markers, amplification of genes encoding receptor tyrosine kinases (RTKs) was specifically identified as a positive predictor of seizures (OR 5.47 [95% CI 1.22–24.47], chi-square = 5.98, p = 0.01). In multivariate analyses considering RTK status, AED use, and either 2007 WHO tumor grade or modern 2016 WHO tumor groups, the authors found that amplification of the RTK proto-oncogene, MET, was most predictive of intraoperative seizure (p < 0.05).CONCLUSIONSThis study describes a previously unreported association between genetic alterations in RTKs and the occurrence of intraoperative seizures during glioma resection with functional mapping. Future models estimating intraoperative seizure risk may be enhanced by inclusion of genetic criteria.


2020 ◽  
Vol 16 (1) ◽  
pp. 5-10
Author(s):  
Adrien Costantini ◽  
Theodoros Katsikas ◽  
Clementine Bostantzoglou

Over the past decade, major breakthroughs in the understanding of lung cancer histology and mutational pathways have radically changed diagnosis and management. More specifically, in non-small cell lung cancer (NSCLC), tumour characterisation has shifted from differentiating based solely on histology to characterisation that includes genetic profiling and mutational status of Epidermal Growth Factor (EGFR), Anaplastic Lymphoma Kinase (ALK), c-ros oncogene 1 (ROS1) and BRAF. These genetic alterations can be targeted by specific drugs that result in improved progression-free survival, as well as higher response rates and are currently standard of care for NSCLC patients harbouring these mutations. In this a narrative, non-systematic review we aim to handpick through the extensive literature and critically present the ground-breaking studies that lead to the institution of tailored treatment options as the standard of care for the main targetable genetic alterations.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 891
Author(s):  
Caiyun Sun ◽  
Yang Qiu ◽  
Qin Ren ◽  
Xiao Zhang ◽  
Baolong Cao ◽  
...  

The serotonin (5-hydroxytryptamine, 5-HT) signaling system is involved in a variety of physiological functions, including the control of cognition, reward, learning, memory, and vasoconstriction in vertebrates. Contrary to the extensive studies in the mammalian system, little is known about the molecular characteristics of the avian serotonin signaling network. In this study, we cloned and characterized the full-length cDNA of three serotonin receptor genes (HTR1B, HTR1E and HTR1F) in chicken pituitaries. Synteny analyses indicated that HTR1B, HTR1E and HTR1F were highly conserved across vertebrates. Cell-based luciferase reporter assays showed that the three chicken HTRs were functional, capable of binding their natural ligands (5-HT) or selective agonists (CP94253, BRL54443, and LY344864) and inhibiting intracellular cAMP production in a dose-dependent manner. Moreover, activation of these receptors could stimulate the MAPK/ERK signaling cascade. Quantitative real-time PCR analyses revealed that HTR1B, HTR1E and HTR1F were primarily expressed in various brain regions and the pituitary. In cultured chicken pituitary cells, we found that LY344864 could significantly inhibit the secretion of PRL stimulated by vasoactive intestinal peptide (VIP) or forskolin, revealing that HTR1F might be involved in the release of prolactin in chicken. Our findings provide insights into the molecular mechanism and facilitate a better understanding of the serotonergic modulation via HTR1B, HTR1E and HTR1F in avian species.


2006 ◽  
Vol 74 (7) ◽  
pp. 3742-3755 ◽  
Author(s):  
Lakshmi Pillai ◽  
Jian Sha ◽  
Tatiana E. Erova ◽  
Amin A. Fadl ◽  
Bijay K. Khajanchi ◽  
...  

ABSTRACT Human diseases caused by species of Aeromonas have been classified into two major groups: septicemia and gastroenteritis. In this study, we reported the molecular and functional characterization of a new virulence factor, ToxR-regulated lipoprotein, or TagA, from a diarrheal isolate, SSU, of Aeromonas hydrophila. The tagA gene of A. hydrophila exhibited 60% identity with that of a recently identified stcE gene from Escherichia coli O157:H7, which encoded a protein (StcE) that provided serum resistance to the bacterium and prevented erythrocyte lysis by controlling classical pathway of complement activation by cleaving the complement C1-esterase inhibitor (C1-INH). We purified A. hydrophila TagA as a histidine-tagged fusion protein (rTagA) from E. coli DE3 strain using a T7 promoter-based pET30 expression vector and nickel affinity column chromatography. rTagA cleaved C1-INH in a time-dependent manner. The tagA isogenic mutant of A. hydrophila, unlike its corresponding wild-type (WT) or the complemented strain, was unable to cleave C1-INH, which is required to potentiate the C1-INH-mediated lysis of host and bacterial cells. We indeed demonstrated colocalization of C1-INH and TagA on the bacterial surface by confocal fluorescence microscopy, which ultimately resulted in increased serum resistance of the WT bacterium. Likewise, we delineated the role of TagA in contributing to the enhanced ability of C1-INH to inhibit the classical complement-mediated lysis of erythrocytes. Importantly, we provided evidence that the tagA mutant was significantly less virulent in a mouse model of infection (60%) than the WT bacterium at two 50% lethal doses, which resulted in 100% mortality within 48 h. Taken together, our data provided new information on the role of TagA as a virulence factor in bacterial pathogenesis. This is the first report of TagA characterization from any species of Aeromonas.


1993 ◽  
Vol 13 (5) ◽  
pp. 2718-2729
Author(s):  
S F Kash ◽  
J W Innis ◽  
A U Jackson ◽  
R E Kellems

Transcription arrest plays a role in regulating the expression of a number of genes, including the murine adenosine deaminase (ADA) gene. We have previously identified two prominent arrest sites at the 5' end of the ADA gene: one in the first exon and one in the first intron (J. W. Innis and R. E. Kellems, Mol. Cell. Biol. 11:5398-5409, 1991). Here we report the functional characterization of the intron 1 arrest site, located 137 to 145 nucleotides downstream of the cap site. We have determined, using gel filtration, that the intron 1 arrest site is a stable RNA polymerase II pause site and that the transcription elongation factor SII promotes read-through at this site. Additionally, the sequence determinants for the pause are located within a 37-bp fragment encompassing this site (+123 to +158) and can direct transcription arrest in an orientation-dependent manner in the context of the ADA and adenovirus major late promoters. Specific point mutations in this region increase or decrease the relative pausing efficiency. We also show that the sequence determinants for transcription arrest can function when placed an additional 104 bp downstream of their natural position.


2014 ◽  
Author(s):  
Akram A Da'dara ◽  
Rita Bhardwaj ◽  
Yasser MB Ali ◽  
Patrick Skelly

Schistosomes are parasitic worms that can survive in the hostile environment of the human bloodstream where they appear refractory to both immune elimination and thrombus formation. We hypothesize that parasite migration in the bloodstream can stress the vascular endothelium causing this tissue to release chemicals alerting responsive host cells to the stress. Such chemicals are called damage associated molecular patterns (DAMPs) and among the most potent is the proinflammatory mediator, adenosine triphosphate (ATP). Furthermore, the ATP derivative ADP is a pro-thrombotic molecule that acts as a strong activator of platelets. Schistosomes are reported to possess at their host interactive tegumental surface a series of enzymes that could, like their homologs in mammals, degrade extracellular ATP and ADP. These are alkaline phosphatase (SmAP), phosphodiesterase (SmNPP-5) and ATP diphosphohydrolase (SmATPDase1). In this work we employ RNAi to knock down expression of the genes encoding these enzymes in the intravascular life stages of the parasite. We then compare the abilities of these parasites to degrade exogenously added ATP and ADP. . We find that only SmATPDase1-suppressed parasites are significantly impaired in their ability to degrade these nucleotides. Suppression of SmAP or SmNPP-5 does not appreciably affect the worms’ ability to catabolize ATP or ADP. These findings are confirmed by the functional characterization of the enzymatically active, full-length recombinant SmATPDase1 expressed in CHO-S cells. The enzyme is a true apyrase; SmATPDase1 degrades ATP and ADP in a cation dependent manner. Optimal activity is seen at alkaline pH. The Km of SmATPDase1 for ATP is 0.4 ±0.02 mM and for ADP, 0.252 ± 0.02 mM. The results confirm the role of tegumental SmATPDase1 in the degradation of the exogenous pro-inflammatory and pro-thrombotic nucleotides ATP and ADP by live intravascular stages of the parasite. By degrading host inflammatory signals like ATP, and pro-thrombotic signals like ADP, these parasite enzymes may minimize host immune responses, inhibit blood coagulation and promote schistosome survival.)


2019 ◽  
Vol 133 (8) ◽  
pp. 953-970 ◽  
Author(s):  
Masaru Katoh

AbstractHedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI–DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.


2019 ◽  
Vol 121 (11) ◽  
pp. 934-943 ◽  
Author(s):  
Sandeep Kumar ◽  
Jordan O’Malley ◽  
Ajay Kumar Chaudhary ◽  
Joseph R. Inigo ◽  
Neelu Yadav ◽  
...  

Abstract Background Interleukin-8 (IL-8) and heat shock protein 60 (Hsp60) play crucial roles in cell survival and maintenance of cellular homoeostasis. However, cross talks between these two proteins are not defined. Methods IL-8 expression in tumour tissue sections was analysed by immunohistochemistry. IL-8 expression and release in cancer cells was quantified using enzyme-linked immunosorbent assay (ELISA). Apoptosis was quantified using caspase activity and Annexin-V/PI staining. Results We observed IL-8 release from cancer cells in response to histone deacetylase inhibitor, apicidin (Api), and non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase, thapsigargin (TG). IL-8 release was increased upon TG-treatment. TG-induced IL-8 expression was reduced in the presence of Api in Bax-dependent manner. Increased apoptosis was associated with decreased IL-8 expression in response to combined treatment of TG and Api. TG and Api combination induced caspase-8 and caspase-9 dependent apoptosis. Hsp60 knockdown abrogated IL-8 expression induced by Api, TG, and their combination. The level of TGF-β, an upstream regulator of IL-8, was decreased upon Hsp60-silencing. Knocking down Hsp60 decreased IL-8 expression and its release in prostate cancer cell xenograft tumours in SCID mice. Conclusion This study describes the underlying mechanism associated with apoptosis resistance mediated via Hsp60-IL-8 axis in cancer.


2005 ◽  
Vol 187 (15) ◽  
pp. 5189-5194 ◽  
Author(s):  
Jason A. Hall ◽  
Ana M. Pajor

ABSTRACT We have cloned and functionally characterized a Na+-coupled dicarboxylate transporter, SdcS, from Staphylococcus aureus. This carrier protein is a member of the divalent anion/Na+ symporter (DASS) family and shares significant sequence homology with the mammalian Na+/dicarboxylate cotransporters NaDC-1 and NaDC-3. Analysis of SdcS function indicates transport properties consistent with those of its eukaryotic counterparts. Thus, SdcS facilitates the transport of the dicarboxylates fumarate, malate, and succinate across the cytoplasmic membrane in a Na+-dependent manner. Furthermore, kinetic work predicts an ordered reaction sequence with Na+ (K 0.5 of 2.7 mM) binding before dicarboxylate (Km of 4.5 μM). Because this transporter and its mammalian homologs are functionally similar, we suggest that SdcS may serve as a useful model for DASS family structural analysis.


Sign in / Sign up

Export Citation Format

Share Document