DDRE-17. TARGETING GLIOBLASTOMA’S GALACTOSE SCAVENGING PATHWAY

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi78-vi78
Author(s):  
Martyn Sharpe ◽  
Alexandra Baskin ◽  
Brianna Baskin ◽  
David Baskin ◽  
Sudhir Raghavan

Abstract BACKGROUND We have recently shown that GBM use D-galactose (Gal) as a substrate, in vitro and in vivo. Gal is imported via Glut3 and/or Glut14 and metabolized through the Leloir pathway. We investigated 4-deoxy-4-fluorogalactose (4DFG) as the lead compound in a family of galactose-based antimetabolites. 4DFG is a potent chemotherapeutic in monotherapy and can bolster existing therapies. METHODS We examined the alteration of glioma metabolism in vitro and in vivo induced by 4DFG. 1H/13C-NMR and optical probes were used to interrogate the effects of 4DFG on glycolysis and mitochondrial respiration in primary glioma cell cultures. Labeled lectins were used to assay for the disruption of glycan synthesis induced by 4DFG. An intracranial model of primary GBM was used to assess efficacy and toxicity in vivo. RESULTS NMR reveals that at physiological concentrations of glucose, low concentrations of 4DFG (5 μM) is able to inhibit glycolytic and mitochondrial flux by approximately 12%, p< 0.05. Analysis using lectins shows a collapse in general glycan synthesis, but most especially in the incorporation of both Gal and GalNAc sugars. In nude mice with intracranial primary GBM, six treatments of 4DFG increased survival from 23 to 50 days, p< 0.002. DISCUSSION The ability of GBM to scavenge galactose allows us to target the Glut3/14 import and Leloir metabolic pathway using galactose-based anti-metabolites. Our first-generation compound is highly effective as a monotherapy, inhibiting glucose metabolism and glycan synthesis.

2020 ◽  
Author(s):  
Jinbiao Xiong ◽  
Gaochao Guo ◽  
Lianmei Guo ◽  
Zengguang Wang ◽  
Zhijuan Chen ◽  
...  

Abstract Background: Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE), for GBM.Methods: in vitro, cell viability assay, apoptosis analysis, western blot, migration and invasion assay were used. In vivo, intracranial tumor models were constructed and the immunohistochemistry were used. Results: We found that combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration and invasion in primary glioma cell and in the human glioma cell line, U87 MG. TMZ enhanced expression of phosphoration of adenosine 5‘-monophosphate-activated protein kinase (p-AMPK) and amlexanox led to reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that, compared to other groups treated with each component alone, TMZ combined with amlexanox effectively inhibited phosphorylation of protein kinase B (AKT) and mammalian target of rapamycin (mTOR). In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. Conclusion: These results suggest that amlexanox sensitized primary glioma cell and U87 MG cell to TMZ at least partially though the suppression of IKBKE activation and the attenuation of AKT activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.


2020 ◽  
Author(s):  
Jinbiao Xiong ◽  
Gaochao Guo ◽  
Lianmei Guo ◽  
Zengguang Wang ◽  
Zhijuan Chen ◽  
...  

Abstract Background: Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE), for GBM. Methods: in vitro, cell viability assay, apoptosis analysis, western blot, migration and invasion assay were used. In vivo, intracranial tumor models were constructed and the immunohistochemistry were used. Results: We found that combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration and invasion in primary glioma cell and in the human glioma cell line, U87 MG. TMZ enhanced expression of phosphoration of adenosine 5‘-monophosphate-activated protein kinase (p-AMPK) and amlexanox led to reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that, compared to other groups treated with each component alone, TMZ combined with amlexanox effectively inhibited phosphorylation of protein kinase B (AKT) and mammalian target of rapamycin (mTOR). In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. Conclusion: These results suggest that amlexanox sensitized primary glioma cell and U87 MG cell to TMZ at least partially though the suppression of IKBKE activation and the attenuation of AKT activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


1988 ◽  
Vol 16 (1) ◽  
pp. 32-37
Author(s):  
Margherita Ferro ◽  
Anna Maria Bassi ◽  
Giorgio Nanni

Two hepatoma cell cultures were examined as in vitro models to be used in genotoxicity and cytotoxicity tests without the addition of bioactivating enzymes. The MH1C1, and HTC hepatoma lines were used in this study to establish their sensitivity to a number of xenobiotics, namely, cyclophosphamide (CP), the classical positive control in bioactivation tests; benzaldehyde (BA), a short-chain aldehyde; and 4-hydroxynonenal (HNE), a major toxic end-product of the peroxidative degradation of cell membrane lipids. As a first approach, we compared the following cytotoxicity tests: release of lactate dehydrogenase (LDH), and colony formation efficiency (CF). Colony-forming cells were exposed to the drugs according to different procedures, before or after the anchorage phase. The leakage of LDH into the medium following exposure of both cell lines to HNE, CP and BA for up to 24 hours was found not to be a good index of cytotoxicity. A better indicator of cytotoxicity was CF, as evaluated by exposure of the cells 24 hours after seeding. The effects were detectable at very low concentrations, corresponding to 10, 90 and 100μM for HNE, CP and BA, respectively. The impairment of CF efficiency was dose-dependent and time-dependent, and several differences between the two cell lines were observed.


2009 ◽  
Vol 191 (6) ◽  
pp. 1749-1755 ◽  
Author(s):  
Jeffrey G. Gardner ◽  
Jorge C. Escalante-Semerena

ABSTRACT This report provides in vivo evidence for the posttranslational control of the acetyl coenzyme A (Ac-CoA) synthetase (AcsA) enzyme of Bacillus subtilis by the acuA and acuC gene products. In addition, both in vivo and in vitro data presented support the conclusion that the yhdZ gene of B. subtilis encodes a NAD+-dependent protein deacetylase homologous to the yeast Sir2 protein (also known as sirtuin). On the basis of this new information, a change in gene nomenclature, from yhdZ to srtN (for sirtuin), is proposed to reflect the activity associated with the YdhZ protein. In vivo control of B. subtilis AcsA function required the combined activities of AcuC and SrtN. Inactivation of acuC or srtN resulted in slower growth and cell yield under low-acetate conditions than those of the wild-type strain, and the acuC srtN strain grew under low-acetate conditions as poorly as the acsA strain. Our interpretation of the latter result was that both deacetylases (AcuC and SrtN) are needed to maintain AcsA as active (i.e., deacetylated) so the cell can grow with low concentrations of acetate. Growth of an acuA acuC srtN strain on acetate was improved over that of the acuA + acuC srtN strain, indicating that the AcuA acetyltransferase enzyme modifies (i.e., inactivates) AcsA in vivo, a result consistent with previously reported in vitro evidence that AcsA is a substrate of AcuA.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15045-e15045
Author(s):  
Irina V. Mezhevova ◽  
Svetlana Yu. Filippova ◽  
Sofia V. Timofeeva ◽  
Anastasia O. Sitkovskaya ◽  
Tatiana V. Shamova ◽  
...  

e15045 Background: Berberine is an alkaloid compound with a structure that is highly similar to that of intercalating agents. It affects numerous cell signaling pathways and is widely studied as potential anticancer drug. It is known that berberine affects cancer cells migration through metalloproteinase-2 inhibition, but this effect was never studied on glioma cells. Anti-migratory drugs are of special interest in brain cancer therapy since glioma's highly invasive nature makes total surgical removal of tumor practically impossible. The aim of the study was to evaluate berberine anti-migratory activity on glioma cells. Methods: Cell migration capacity of T98G and U87MG cell lines, as well as primary glioma cell culture established in our laboratory, was assessed via standard wound healing assay with automated image acquisition and analysis on Lionheart FX (BioTek) cell imager. Prior to assay setting up cell cultures were maintained in DMEM medium with L-glutamine (1 μM) (Gibco) and 10% FBS (Gibco) at 37C0 and 5.0% CO2. Cells were seeded at 250 000 cells per well on 24-well plates and incubated overnight in order to attach to plate bottom. After that a vertical wound was made manually in each well, and berberine was added to experimental wells to final concentration 50 mg/L. Plates with cells were continuously incubated and photographed in cell imager at 37C0 and 5.0% CO2. The extent of cells migration was measured as the percent of wound area decrease after 24 hours of incubation in relation to starting time point. Data are given as: Mean ± 95% confidence interval. Results: In our study we berberine exhibited anti-migratory activity in all cell cultures under study. In rather fast growing primary cell culture wound area decrease was 99.23%±0.62% in control sample and 91.75%±0.28% in experimental sample. The difference was small but significant at p < 0.001 level (df = 30). Popular permanent glioma cell lines T98G and U87MG showed more prominent decrease in studied parameter with higher degree of variance at the same time. In T98G wound area decrease was 71.6%±12.3% in control and 48.8%± 7.6% in experimental samples after 24 hours of cultivation in presence of 50 mg/L berberine. While U87MG demonstrated 60.28%±5.13% and 37.5%± 8.34% wound area decrease accordingly. The obtained difference between control and experimental groups in permanent cell cultures was statistically significant at the 0.05 level (df = 30). Conclusions: Our preliminary research proved berberine to be potent anti-migratory agent in glioma treatment. Further investigations are needed to evaluate its ability to inhibit glioma cell expansion in vivo.


2021 ◽  
Author(s):  
Ingrid Zanella-Saenz ◽  
Elisabeth A. Herniou ◽  
Jorge E. Ibarra ◽  
Ma.Cristina Del Rincón-Castro ◽  
Ilse Alejandra Huerta-Arredondo

Abstract Fall armyworm (FAW), Spodoptera frugiperda (Smith, 1797), is a polyphagous, voracious, and economically important agricultural pest. Biological control of FAW is a strategy that must be further explored. This study evaluated six baculovirus strains isolated from infected FAW larvae from Mexico, Argentina, Honduras, and the United States. Five alphabaculoviruses (SfNPV-An2, SfNPV-Arg, SfNPV-Fx, SfNPV-Ho and SfNPV-Sin) and one betabaculovirus (SfGV-RV), were tested against FAW larvae, showing a wide diversity of virulence levels among strains when their estimated LC50s were compared, being SfNPVArg, SfNPV-Ho and SfNPV-Fx more virulent than SfNPV-An 2 , SfNPV-Sin and SfGV-RV. To determine any virulence difference in vitro studies of these isolates, Sf9 cell cultures were used. Interestingly, only ODVs from four of the test SfNPV strains showed infectivity on Sf9 cell cultures, and some differences in virulence were observed. Genomic restriction analyses and partial sequences of lef-8, lef-9 , and polh/granulin genes showed little variability among alphabaculoviruses, both, among them and with previously reported sequences. However, sequences from SfGV-RV were closer to previously reported sequences from the SfGVVG008 strain than the SfGV-Arg and SfGV-VG014 strains. The great difference in the in vivo virulence was not correlated with great similarity among the isolates. The characterization of these six baculoviruses isolates offers the basis for exploring their potential as biological control agents against S. frugiperda, as well the initial studies on their specific infection mechanisms, evolution, and ecology.


Sign in / Sign up

Export Citation Format

Share Document