Algorithms Based on Amplitude Amplification

Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

In this section, we discuss a broadly applicable quantum algorithm that provides a polynomial speed-up over the best-known classical algorithms for a wide class of important problems. The quantum search algorithm performs a generic search for a solution to a very wide range of problems. Consider any problem where one can efficiently recognize a good solution and wishes to search through a list of potential solutions in order to find a good one. For example, given a large integer N, one can efficiently recognize whether an integer p is a non-trivial factor of N, and thus one naive strategy for finding non-trivial factors of N is to simply search through the set {2, 3, 4, . . . , ⌊√N⌋} until a factor is found. The factoring algorithm we described in Chapter 7 is not such a naive algorithm, as it makes profound use of the structure of the problem. However, for many interesting problems, there are no known techniques that make much use of the structure of the problem, and the best-known algorithm for solving these problems is to naively search through the potential solutions until one is found. Typically the number of potential solutions is exponential in the size of the problem instance, and so the naive algorithm is not efficient. Often the best-known classical search makes some very limited use of the structure of the problem, perhaps to rule out some obviously impossible candidates, or to prioritize some more likely candidates, but the overall complexity of the search is still exponential. Quantum searching is a tool for speeding up these sorts of generic searches through a space of potential solutions. It is worth noting that having a means of recognizing a solution to a problem, and knowing the set of possible solutions, means that in some sense one ‘knows’ the solution. However, one cannot necessarily efficiently produce the solution. For example, it is easy to recognize the factors of a number, but finding those factors can take a long time. We give this problem a more general mathematical structure as follows.

2008 ◽  
pp. 61-76
Author(s):  
A. Porshakov ◽  
A. Ponomarenko

The role of monetary factor in generating inflationary processes in Russia has stimulated various debates in social and scientific circles for a relatively long time. The authors show that identification of the specificity of relationship between money and inflation requires a complex approach based on statistical modeling and involving a wide range of indicators relevant for the price changes in the economy. As a result a model of inflation for Russia implying the decomposition of inflation dynamics into demand-side and supply-side factors is suggested. The main conclusion drawn is that during the recent years the volume of inflationary pressures in the Russian economy has been determined by the deviation of money supply from money demand, rather than by money supply alone. At the same time, monetary factor has a long-run spread over time impact on inflation.


Author(s):  
Dr. Jyotsna Sankpal ◽  
Dr. Jyotsna Takalikar

Rasa Shastra and Bhaishajya Kalpana is branch of the ancient Indian medical science based on herbs and herbo-mineral preparation. Tankana has been described under Uparasa Tankana, which is one among the Kshara Trayas has been used since very long time in Ayurveda. It has a wide range of therapeutic applications, including diseases like Varna (ulcers), Shvasa (asthma), Kasa (cough), Hrudya (beneficial to heart disease), Streepushpajanana (menstrual disorders) etc. It is used in the form of compound formulations like Parpati, Kupipakwa, Khalvee Rasayana, Churna, Vati, Lepa etc. In this paper Tankana Shodhana procedure, different synonyms, dose, Anupana, indications and different formulations containing Tankana Bhasma has been discussed.


Author(s):  
Ruiyang Song ◽  
Kuang Xu

We propose and analyze a temporal concatenation heuristic for solving large-scale finite-horizon Markov decision processes (MDP), which divides the MDP into smaller sub-problems along the time horizon and generates an overall solution by simply concatenating the optimal solutions from these sub-problems. As a “black box” architecture, temporal concatenation works with a wide range of existing MDP algorithms. Our main results characterize the regret of temporal concatenation compared to the optimal solution. We provide upper bounds for general MDP instances, as well as a family of MDP instances in which the upper bounds are shown to be tight. Together, our results demonstrate temporal concatenation's potential of substantial speed-up at the expense of some performance degradation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valentin Gebhart ◽  
Luca Pezzè ◽  
Augusto Smerzi

AbstractDespite intensive research, the physical origin of the speed-up offered by quantum algorithms remains mysterious. No general physical quantity, like, for instance, entanglement, can be singled out as the essential useful resource. Here we report a close connection between the trace speed and the quantum speed-up in Grover’s search algorithm implemented with pure and pseudo-pure states. For a noiseless algorithm, we find a one-to-one correspondence between the quantum speed-up and the polarization of the pseudo-pure state, which can be connected to a wide class of quantum statistical speeds. For time-dependent partial depolarization and for interrupted Grover searches, the speed-up is specifically bounded by the maximal trace speed that occurs during the algorithm operations. Our results quantify the quantum speed-up with a physical resource that is experimentally measurable and related to multipartite entanglement and quantum coherence.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Karen A. Hudson ◽  
Matthew E. Hudson

The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH) family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281) of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.


2008 ◽  
Vol 105 (40) ◽  
pp. 15253-15257 ◽  
Author(s):  
Mikko Alava ◽  
John Ardelius ◽  
Erik Aurell ◽  
Petteri Kaski ◽  
Supriya Krishnamurthy ◽  
...  

We study the performance of stochastic local search algorithms for random instances of the K-satisfiability (K-SAT) problem. We present a stochastic local search algorithm, ChainSAT, which moves in the energy landscape of a problem instance by never going upwards in energy. ChainSAT is a focused algorithm in the sense that it focuses on variables occurring in unsatisfied clauses. We show by extensive numerical investigations that ChainSAT and other focused algorithms solve large K-SAT instances almost surely in linear time, up to high clause-to-variable ratios α; for example, for K = 4 we observe linear-time performance well beyond the recently postulated clustering and condensation transitions in the solution space. The performance of ChainSAT is a surprise given that by design the algorithm gets trapped into the first local energy minimum it encounters, yet no such minima are encountered. We also study the geometry of the solution space as accessed by stochastic local search algorithms.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1396
Author(s):  
Z. N. Diyana ◽  
R. Jumaidin ◽  
Mohd Zulkefli Selamat ◽  
Ihwan Ghazali ◽  
Norliza Julmohammad ◽  
...  

Thermoplastic starch composites have attracted significant attention due to the rise of environmental pollutions induced by the use of synthetic petroleum-based polymer materials. The degradation of traditional plastics requires an unusually long time, which may lead to high cost and secondary pollution. To solve these difficulties, more petroleum-based plastics should be substituted with sustainable bio-based plastics. Renewable and natural materials that are abundant in nature are potential candidates for a wide range of polymers, which can be used to replace their synthetic counterparts. This paper focuses on some aspects of biopolymers and their classes, providing a description of starch as a main component of biopolymers, composites, and potential applications of thermoplastics starch-based in packaging application. Currently, biopolymer composites blended with other components have exhibited several enhanced qualities. The same behavior is also observed when natural fibre is incorporated with biopolymers. However, it should be noted that the degree of compatibility between starch and other biopolymers extensively varies depending on the specific biopolymer. Although their efficacy is yet to reach the level of their fossil fuel counterparts, biopolymers have made a distinguishing mark, which will continue to inspire the creation of novel substances for many years to come.


2018 ◽  
Vol 7 (3) ◽  
pp. 24-46
Author(s):  
Sourav Paul ◽  
Provas Roy

In this article, an Oppositional Differential search algorithm (ODSA) is comprehensively developed and successfully applied for the optimal design of power system stabilizer (PSS) parameters which are added to the excitation system to dampen low frequency oscillation as it pertains to large power system. The effectiveness of the proposed method is examined and validated on a single machine infinite bus (SMIB) using the Heffron-Phillips model. The most important advantage of the proposed method is as it reaches toward the optimal solution without the optimal tuning of input parameters of the ODSA algorithm. In order to verify the effectiveness, the simulation was made for a wide range of loading conditions. The simulation results of the proposed ODSA are compared with those obtained by other techniques available in the recent literature to demonstrate the feasibility of the proposed algorithm.


Author(s):  
Shuaibu Babaji Sanusi ◽  
Mohd Fadzelly Abu Bakar ◽  
Maryati Mohamed ◽  
Siti Fatimah Sabran ◽  
Muhammad Murtala Mainasara

The genus Nepenthes (Nepenthaceae) has been utilized in folk medicine for a long time in India and Southeast Asia countries. They are used in the treatment of leprosy, cholera, night blindness, gastrointestinal discomfort, dysentery, stomachache, and bed-wetting among others. This review highlights the ethnobotanical uses, phytochemicals, and pharmacological activities of both crude extracts and pure bioactive compounds of Nepenthes spp. The phytochemical compounds isolated from Nepenthes species include flavonoids, terpenoids, tannins, alkaloids, and steroids among other phytochemicals. A wide range of pharmacological activities was exhibited by the crude extracts and pure bioactive components such as antibacterial, antifungal, antimalarial antioxidant, antidiabetic, antiosteoporotic, anti-inflammatory, cytotoxicity, and hypolipidemic activities. This review revealed that many active compounds are present in Nepenthes spp. However, many pharmacological screenings such as anticancer, antiviral, wound healing, antihelminthic, antidiarrheal properties, among others have not been carried out yet. Therefore, more biological investigations and phytochemical screenings are required to fully explore the genus Nepenthes which may lead to development of new therapeutic agents.  


2015 ◽  
Vol 1117 ◽  
pp. 283-286
Author(s):  
Inga Dāboliņa ◽  
Ausma Viļumsone ◽  
Jānis Dāboliņš ◽  
Dana Beļakova

Computer aided designing software not only the possibility to speed up the process of putting a new model into production and improve the quality of the products, but also reduces material costs and labour intensity, ensuring an elastic change of the assortment. The designing of clothes includes a row of processes and one of the most time and labour consuming is constructing. A construction displays the layout (pattern) of the surface of the body (garment). As it depends on correct anthropometric data, it is very important to get ones right. The use of 3D surface scanning technologies to produce digitized representations of the human anatomy has the potential to help change the way a wide range of products are designed and produced. Every scanning device is equipped with optic (light) appliances to ensure non-contact measuring. Measurements acquired by 3D scanning device should be checked out for compliance with CAD systems for automatized pattern making procedure. The paper introduces the experiment with scanned data usage in CAD pattern making. The project aims to implement scanned data values in the CAD/CAM individual measurement list for acquiring individualized pattern blocks.


Sign in / Sign up

Export Citation Format

Share Document