scholarly journals An open-source research tool to study triaxial inertial sensors for monitoring selected behaviors in sheep

2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Barbara R dos Reis ◽  
Daniel R Fuka ◽  
Zachary M Easton ◽  
Robin R White

Abstract The use of automated systems for monitoring animal behavior provides information on individual animal behavior and can be used to enhance animal productivity. However, the advancement of this industry is hampered by technology costs, challenges with power supplies, limited data accessibility, and inconsistent testing approaches for confirming the detection of livestock behaviors. Development of open-source research tools similar to commercially available wearable technologies may contribute to the development of more-efficient and affordable technologies. The objective of this study was to demonstrate an open-source, microprocessor-based sensor designed to monitor and enable differentiation among selected behaviors of adult wethers. The sensor was comprised of an inexpensive espressif ESP-32-WROOM-32 microprocessor with Bluetooth communication, a generic MPU92/50 motion sensor that contains a three-axis accelerometer, three-axis magnetometer, a three-axis gyroscope, and a 5-V rechargeable lithium-ion battery. The open-source Arduino IDE software was used to program the microprocessor and to adjust the frequency of sampling, the data packet to send, and the operating conditions. For demonstration purposes, sensors were placed on six housed sheep for three 1-h increments with concurrent visual behavioral observation. Sensor readings (x-, y-, and z-axis) were summarized (mean and SD) within a minute and compared to animal behavior observations (also on a by-minute basis) using a linear mixed-effect model with animal as a random effect and behavioral classifier as a fixed effect. This analysis demonstrated the basic utility of the sensor to differentiate among animal behaviors based on sensed data (P < 0.001). Although substantial additional work is needed for algorithm development, power source testing, and network optimization, this open-source platform appears to be a promising strategy to research wearable sensors in a generalizable manner.

2021 ◽  
Vol 9 (4) ◽  
pp. 36
Author(s):  
Vittorio Checchi ◽  
Marco Montevecchi ◽  
Luigi Checchi

Since aerosol continuously persists in dental settings, where different procedures and patients come in succession, the use of oronasal masks is highly recommended. Among them, respirators known as Filtering Face Pieces (FFP) show a protective superiority compared to surgical masks. Even concerning respirators classified as non-reusable, it is not known how many hours of use are necessary to compromise their filtering capacity. The aim of this study is to investigate the variations of filtering capacity of an FFP2 respirator over time, in order to safely optimize the timing of its use. Five respirators were worn by the same operator during clinical activity for different usage times (8, 16, 24, 32, 40 h), and one respirator was kept unused. All respirators underwent a bacterial filtration efficacy (BFE) test. T-test for paired data with Bootstrap technique and Wilcoxon test for paired data compared BFE values of the five tested FFP2s respectively at each time, and the areas with the corresponding values of the control respirator (FFp2-F). A generalized linear mixed effect model (GLM) was applied considering type of respirator and time as fixed effects and intercept as random effect. No significant statistical differences were present in the BFE of each time. Data obtained by the present study highlight the important ability of FFP2s to maintain their BFE over time, suggesting a long lasting protective function.


2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


2020 ◽  
Vol 71 (Supplement_3) ◽  
pp. S257-S265 ◽  
Author(s):  
Kristen Aiemjoy ◽  
Dipesh Tamrakar ◽  
Shampa Saha ◽  
Shiva R Naga ◽  
Alexander T Yu ◽  
...  

Abstract Background Enteric fever, a bacterial infection caused by Salmonella enterica serotypes Typhi and Paratyphi A, frequently presents as a nonlocalizing febrile illness that is difficult to distinguish from other infectious causes of fever. Blood culture is not widely available in endemic settings and, even when available, results can take up to 5 days. We evaluated the diagnostic performance of clinical features, including both reported symptoms and clinical signs, of enteric fever among patients participating in the Surveillance for Enteric Fever in Asia Project (SEAP), a 3-year surveillance study in Bangladesh, Nepal, and Pakistan. Methods Outpatients presenting with ≥3 consecutive days of reported fever and inpatients with clinically suspected enteric fever from all 6 SEAP study hospitals were eligible to participate. We evaluated the diagnostic performance of select clinical features against blood culture results among outpatients using mixed-effect regression models with a random effect for study site hospital. We also compared the clinical features of S. Typhi to S. Paratyphi A among both outpatients and inpatients. Results We enrolled 20 899 outpatients, of whom 2116 (10.1%) had positive blood cultures for S. Typhi and 297 (1.4%) had positive cultures for S. Paratyphi A. The sensitivity of absence of cough was the highest among all evaluated features, at 65.5% (95% confidence interval [CI], 55.0–74.7), followed by measured fever at presentation at 59.0% (95% CI, 51.6–65.9) and being unable to complete normal activities for 3 or more days at 51.0% (95% CI, 23.8–77.6). A combined case definition of 3 or more consecutive days of reported fever and 1 or more of the following (a) either the absence of cough, (b) fever at presentation, or (c) 3 or more consecutive days of being unable to conduct usual activity--yielded a sensitivity of 94.6% (95% CI, 93.4–95.5) and specificity of 13.6% (95% CI, 9.8–17.5). Conclusions Clinical features do not accurately distinguish blood culture–confirmed enteric fever from other febrile syndromes. Rapid, affordable, and accurate diagnostics are urgently needed, particularly in settings with limited or no blood culture capacity.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel E. Runcie ◽  
Jiayi Qu ◽  
Hao Cheng ◽  
Lorin Crawford

AbstractLarge-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed effect model, a tool notorious for its fragility when applied to more than a handful of traits. We present , a statistical framework and associated software package for mixed model analyses of a virtually unlimited number of traits. Using three examples with real plant data, we show that can leverage thousands of traits at once to significantly improve genetic value prediction accuracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory R. Keele ◽  
Jeremy W. Prokop ◽  
Hong He ◽  
Katie Holl ◽  
John Littrell ◽  
...  

AbstractChronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.


Author(s):  
Kristy A. Martire ◽  
Bethany Growns ◽  
Agnes S. Bali ◽  
Bronte Montgomery-Farrer ◽  
Stephanie Summersby ◽  
...  

AbstractPast research suggests that an uncritical or ‘lazy’ style of evaluating evidence may play a role in the development and maintenance of implausible beliefs. We examine this possibility by using a quasi-experimental design to compare how low- and high-quality evidence is evaluated by those who do and do not endorse implausible claims. Seven studies conducted during 2019–2020 provided the data for this analysis (N = 746). Each of the seven primary studies presented participants with high- and/or low-quality evidence and measured implausible claim endorsement and evaluations of evidence persuasiveness (via credibility, value, and/or weight). A linear mixed-effect model was used to predict persuasiveness from the interaction between implausible claim endorsement and evidence quality. Our results showed that endorsers were significantly more persuaded by the evidence than non-endorsers, but both groups were significantly more persuaded by high-quality than low-quality evidence. The interaction between endorsement and evidence quality was not significant. These results suggest that the formation and maintenance of implausible beliefs by endorsers may result from less critical evidence evaluations rather than a failure to analyse. This is consistent with a limited rather than a lazy approach and suggests that interventions to develop analytical skill may be useful for minimising the effects of implausible claims.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1447
Author(s):  
Ishaku L. Haruna ◽  
Yunhai Li ◽  
Ugonna J. Ekegbu ◽  
Hamed Amirpour-Najafabadi ◽  
Huitong Zhou ◽  
...  

The myostatin gene (MSTN), which encodes the protein myostatin, is pleiotropic, and its expression has been associated with both increased and decreased adipogenesis and increased skeletal muscle mass in animals. In this study, the polymerase chain reaction, coupled with single strand conformation polymorphism analysis, was utilized to reveal nucleotide sequence variation in bovine MSTN in 410 New Zealand (NZ) Holstein-Friesian × Jersey (HF × J)-cross cows. These cows ranged from 3 to 9 years of age and over the time studied, produced an average 22.53 ± 2.18 L of milk per day, with an average milk fat content of 4.94 ± 0.17% and average milk protein content of 4.03 ± 0.10%. Analysis of a 406-bp amplicon from the intron 1 region, revealed five nucleotide sequence variants (A–E) that contained seven nucleotide substitutions. Using general linear mixed-effect model analyses the AD genotype was associated with reduced C10:0, C12:0, and C12:1 levels when compared to levels in cows with the AA genotype. These associations in NZ HF × J cross cows are novel, and they suggest that this variation in bovine MSTN could be explored for increasing the amount of milk unsaturated fatty acid and decreasing the amount of saturated fatty acid.


Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
Author(s):  
Amy Brodtmann ◽  
Mohamed Salah Khlif ◽  
Natalia Egorova ◽  
Michele Veldsman ◽  
Laura J. Bird ◽  
...  

Background and Purpose: Brain atrophy can be regarded as an end-organ effect of cumulative cardiovascular risk factors. Accelerated brain atrophy is described following ischemic stroke, but it is not known whether atrophy rates vary over the poststroke period. Examining rates of brain atrophy allows the identification of potential therapeutic windows for interventions to prevent poststroke brain atrophy. Methods: We charted total and regional brain volume and cortical thickness trajectories, comparing atrophy rates over 2 time periods in the first year after ischemic stroke: within 3 months (early period) and between 3 and 12 months (later period). Patients with first-ever or recurrent ischemic stroke were recruited from 3 Melbourne hospitals at 1 of 2 poststroke time points: within 6 weeks (baseline) or 3 months. Whole-brain 3T magnetic resonance imaging was performed at 3 time points: baseline, 3 months, and 12 months. Eighty-six stroke participants completed testing at baseline; 125 at 3 months (76 baseline follow-up plus 49 delayed recruitment); and 113 participants at 12 months. Their data were compared with 40 healthy control participants with identical testing. We examined 5 brain measures: hippocampal volume, thalamic volume, total brain and hemispheric brain volume, and cortical thickness. We tested whether brain atrophy rates differed between time points and groups. A linear mixed-effect model was used to compare brain structural changes, including age, sex, years of education, a composite cerebrovascular risk factor score, and total intracranial volume as covariates. Results: Atrophy rates were greater in stroke than control participants. Ipsilesional hemispheric, hippocampal, and thalamic atrophy rates were 2 to 4 times greater in the early versus later period. Conclusions: Regional atrophy rates vary over the first year after stroke. Rapid brain volume loss in the first 3 months after stroke may represent a potential window for intervention. Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT02205424.


2018 ◽  
Vol 36 (08) ◽  
pp. 781-784
Author(s):  
Katherine A. Connolly ◽  
Luciana Vieira ◽  
Elizabeth M. Yoselevsky ◽  
Stephanie Pan ◽  
Joanne L. Stone

Objective To quantify the degree of change in cervical length (CL) over a 3-minute transvaginal ultrasound. Study Design We conducted a prospective observational study of nulliparous patients who underwent routine transvaginal CL screening at the time of their second-trimester ultrasound. We recorded CL at four time points (0, 1, 2, 3 minutes) and compared these values to determine the minute-to-minute change within a single patient. Results A total of 771 patients were included. The mean gestational age was 20.8 weeks (±0.84). We used a linear mixed effect model to assess if each minute during the ultrasound is associated with a change in CL. The intraclass correlation coefficient between minute 0 to minute 3 was 0.82 (95% confidence interval: 0.80, 0.84). This indicates that there is a relatively high within-patient correlation in CL during their ultrasound. Additionally, we stratified patients based on their starting CL; the intraclass correlation coefficient remained high for all groups. We additionally compared CL at each minute. Although there is a statistically significant difference between several time points, the actual difference is small and not clinically meaningful. Conclusion The variation in CL over a 3-minute transvaginal ultrasound examination is not clinically significant. It may be reasonable to conduct this examination over a shorter period.


Sign in / Sign up

Export Citation Format

Share Document