Law as a fixture between the One Health interfaces of emerging diseases

2017 ◽  
Vol 111 (6) ◽  
pp. 241-243 ◽  
Author(s):  
Alexandra L Phelan ◽  
Lawrence O Gostin
Keyword(s):  
Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 414
Author(s):  
Mary Garvey

Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the “One Health” approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Nanfuka ◽  
Milton Bahati ◽  
Eugene Arinaitwe

ObjectiveTo detect presence of circulating Rift Valley Fever virus (RVFv) in animals of Western and Central Uganda following its confirmation in humans.To establish and communicate reliable information using the one health platformSignificnce:Although in E. Africa RVF was initially detected and known to be a disease endermic in Kenya, the people in Uganda were still hesitating wether the disease is already in existence. Following its first detection in 2016 in Humans there was need to carry out an investigation in the hot spot areas of the human infection to get the real picture and to inform the policy makers for informed decisions.IntroductionRift Valley fiver is viral zoonotic disease which was investigated and reported in Uganda in 20101. For some time now people are not aware whether the disease was still circulating or emerged in animals reared as a result of the inter country trade by the community of the cattle corridor in Uganda, since the last reports in 19682. The increase in the number of disease outbreaks in some parts of central and western Uganda from 2016 to date and the number of human patients investigated, diagnosed and confirmed with RVF by Ministry Of Health (MOH) under the one health program, has placed the disease to be among the top re-emerging diseases in the country3&4 and number 5 of the Multisectoral prioritization of zoonotic diseases in Uganda, 2017 under One Health perspective6.MethodsRift valley Fever was investigated in cattle, goats and sheep of Gomba,Mityana, Kiboga and Kiruhura in Central and Western Uganda. This followed 2 people that had been confirmed with RVF in 20161 Samples were aseptically collected from hot places from 543 victim’s animals including those of the neighbouring areas covering the victims routes of movement plus those areas where people were still sick and where death had reportedly occurred. Samples were then delivered to NADDEC laboratory from where tests were conducted.ResultsSamples were screened using a competition IgG ELISA, then IgM ELISA to capture the recently infected animals. The positive samples from the IgM ELISA were then confirmed using RT-PCR; 169/543 (31%) tested positive to IgG screening ELISA indicating exposure to RVF. The actual infection was found to be 13% (22/169) with IgM ELISA and 3/22 (13.6%) with RT-PCR.ConclusionsZoonotic diseases continue to be a public health burden to the people of Uganda. Considering some people’s behavior of eating the sick and dead animals, has posed a difficult situation to combat the ailment which has resulted in negative socioeconomic impacts, affecting the national policies that range from health security to control of diseases. Uganda has however developed capacity to investigate, test and confirm RVF disease. Since exposure was found in all animal species, detailed active surveillance plan and procedures have been set up to investigate any additional cases in animals to reduce chances of spread to humans and to cub international spread and also to determine the magnitude of exposure.References1 Nabukenya, Investigation and response to Rift Valley Fever and Yellow Fever outbreaks in humans in Uganda, 20162 Nyakarahuka L.prevalence and risk factors of Rift valley in humans and animals from kabale, 20163 Wang LF, Crameri G.Emerging zoonotic viral diseases.Rev Sci Tech Int Epiz.2014;33Institute of Medicine (U.S.), Committee on Achieving Sustainable Global Capacity for surveillance and4 Response to Emerging Diseases of Zoonotic Origin, Keusch G. Sustaining global surveillance and response to emerging zoonotic diseases, 20095 Musa Sekamatte, Vikram K.Multisectoral prioritization of zoonotic diseases in Uganda, 2017, A One Health perspective6 Munyua P, Bitek A, Osoro E, Pieracci EG, Muema J,Mwatondo A,et al, Prioritization of Zoonotic Diseases in Kenya,2015. PLOS ONE. 2016;11:e0161576. http://doi.org/10.1371/journal.pone.0161576 PMID:27557120 


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Terra R. Kelly ◽  
◽  
Catherine Machalaba ◽  
William B. Karesh ◽  
Paulina Zielinska Crook ◽  
...  

AbstractRecurring outbreaks of emerging and re-emerging zoonoses, such as Ebola virus disease, avian influenza, and Nipah virus, serve as a reminder that the health of humans, animals, and the environment are interconnected and that early response to emerging zoonotic pathogens requires a coordinated, interdisciplinary, cross-sectoral approach. As our world becomes increasingly connected, emerging diseases pose a greater threat, requiring coordination at local, regional, and global levels. One Health is a multisectoral, transdisciplinary, and collaborative approach promoted to more effectively address these complex health threats. Despite strong advocacy for One Health, challenges for practical implementation remain. Here we discuss the value of the One Health approach for addressing global health challenges. We also share strategies applied to achieve successful outcomes through the USAID Emerging Pandemic Threats Program PREDICT project, which serve as useful case studies for implementing One Health approaches. Lastly, we explore methods for promoting more formal One Health implementation to capitalize on the added value of shared knowledge and leveraged resources.


Author(s):  
Delia Grace

This article outlines a pathway to develop the business case for One Health. It describes the origin and development of One Health and then identifies five potential areas where One Health can add value and reduce costs. These are: (1) sharing health resources between the medical and veterinary sectors; (2) controlling zoonoses in animal reservoirs; (3) early detection and response to emerging diseases; (4) prevention of pandemics; and (5) generating insights and adding value to health research and development. Examples are given for each category along with preliminary estimates of the potential savings from adopting the One Health approach. The literature reviewed suggests that one dollar invested in One Health can generate five dollars worth of benefits and a global investment of US$25 billion over 10 years could generate benefits worth at least US$125 billion. Conservation implications: the time has come to make the bigger case for massive investment in One Health in order to transform the management of neglected and emerging zoonoses and to save the lives of millions of people and hundreds of millions of animals whose production supports and nourishes billions of impoverished people per annum.


Author(s):  
Erasto V. Mbugi ◽  
Kim A. Kayunze ◽  
Bugwesa Z. Katale ◽  
Sharon Kendall ◽  
Liam Good ◽  
...  

Infectious diseases account for nearly 40% of the burden of human mortality and morbidity in low-income countries, of which 7% is attributable to zoonoses and 13% to recently emerging diseases from animals. One of the strategic approaches for effective surveillance, monitoring and control of infectious diseases compromising health in both humans and animals could be through a combination of multiple disciplines. The approach can be achieved through a joint effort from stakeholders comprising health professionals (medical and veterinary), social, economic, agricultural, environmental and other interested parties. With resource scarcity in terms of number of staff, skills and facility in low-income countries, participatory multi- sectoral and multidisciplinary approaches in limiting the burden of zoonotic diseases could be worthwhile. We review challenging issues that may limit the ‘One Health’ approach for infectious diseases surveillance in Tanzania with a focus on Health Policy and how best the human and animal health systems could be complemented or linked to suit the community in need for disease control under the theme’s context.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
L Ben Abdelahfidh ◽  
F Rojas Lopez ◽  
B Djibo Mazou ◽  
M Miller ◽  
L Meissner ◽  
...  

Abstract Despite multiple efforts made by its government to improve public health, Niger still regularly faces numerous disasters including epidemics. Between 2017 and 2019, a consortium was established between Doctors of the World and Veterinarians Without Borders to implement a “One Health” project. This approach aims to reduce the populations' vulnerabilities to health risks related to environmental disasters and improve the health system's resilience at several levels. By promoting interdisciplinary between human, veterinary and environmental health issues, it aims to tackle emerging diseases with pandemic risk. The project was implemented in 2 municipalities: Sakoira and Ingall. For the first time, a program focused on preventing health and environmental risks rather than responding to a crisis. An external evaluation based on 278 interviews identified 5 project's achievements: (1) the increase in availability and accessibility of human and veterinary pharmaceutical products which improved vaccination coverage and medicalization while lowering treatment and prevention costs; (2) the mobilization and coordination of human and animal health professionals, national authorities and municipalities; (3) the strengthening of joint epidemiological surveillance through professional and community actors in order to reduce the response time to epidemics and disasters; (4) the strengthening of communities' understanding of health risks and how to prevent them; (5) the capacity building of professionals regarding the One Health approach at national, regional and local level. Coordination between human and animal health professionals has made possible the design and implementation of joint actions. These actions have enabled to: build capacity for 43 health providers, 116 community health workers and 41 livestock auxiliaries, vaccinate, de-worm and treat 24311 small and 7590 large ruminants, give primary health care to 4190 people, sensitize 2268 people on human and animal health. Key messages The project is innovative as it focuses on preventing epidemic risks instead of responding to crisis. Collaboration between human and animal health actors is the main success factor of the project.


Author(s):  
Andrea Springer ◽  
Antje Glass ◽  
Julia Probst ◽  
Christina Strube

AbstractAround the world, human health and animal health are closely linked in terms of the One Health concept by ticks acting as vectors for zoonotic pathogens. Animals do not only maintain tick cycles but can either be clinically affected by the same tick-borne pathogens as humans and/or play a role as reservoirs or sentinel pathogen hosts. However, the relevance of different tick-borne diseases (TBDs) may vary in human vs. veterinary medicine, which is consequently reflected by the availability of human vs. veterinary diagnostic tests. Yet, as TBDs gain importance in both fields and rare zoonotic pathogens, such as Babesia spp., are increasingly identified as causes of human disease, a One Health approach regarding development of new diagnostic tools may lead to synergistic benefits. This review gives an overview on zoonotic protozoan, bacterial and viral tick-borne pathogens worldwide, discusses commonly used diagnostic techniques for TBDs, and compares commercial availability of diagnostic tests for humans vs. domestic animals, using Germany as an example, with the aim of highlighting existing gaps and opportunities for collaboration in a One Health framework.


One Health ◽  
2021 ◽  
pp. 100257
Author(s):  
Chikwe Ihekweazu ◽  
Charles Akataobi Michael ◽  
Patrick M. Nguku ◽  
Ndadilnasiya Endie Waziri ◽  
Abdulrazaq Garba Habib ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 240
Author(s):  
Sarah Humboldt-Dachroeden ◽  
Alberto Mantovani

Background: One Health is a comprehensive and multisectoral approach to assess and examine the health of animals, humans and the environment. However, while the One Health approach gains increasing momentum, its practical application meets hindrances. This paper investigates the environmental pillar of the One Health approach, using two case studies to highlight the integration of environmental considerations. The first case study pertains to the Danish monitoring and surveillance programme for antimicrobial resistance, DANMAP. The second case illustrates the occurrence of aflatoxin M1 (AFM1) in milk in dairy-producing ruminants in Italian regions. Method: A scientific literature search was conducted in PubMed and Web of Science to locate articles informing the two cases. Grey literature was gathered to describe the cases as well as their contexts. Results: 19 articles and 10 reports were reviewed and informed the two cases. The cases show how the environmental component influences the apparent impacts for human and animal health. The DANMAP highlights the two approaches One Health and farm to fork. The literature provides information on the comprehensiveness of the DANMAP, but highlights some shortcomings in terms of environmental considerations. The AFM1 case, the milk metabolite of the carcinogenic mycotoxin aflatoxin B1, shows that dairy products are heavily impacted by changes of the climate as well as by economic drivers. Conclusions: The two cases show that environmental conditions directly influence the onset and diffusion of hazardous factors. Climate change, treatment of soils, water and standards in slaughterhouses as well as farms can have a great impact on the health of animals, humans and the environment. Hence, it is important to include environmental considerations, for example, via engaging environmental experts and sharing data. Further case studies will help to better define the roles of environment in One Health scenarios.


2021 ◽  
pp. 004947552110052
Author(s):  
Sandeep Moola ◽  
Deepti Beri ◽  
Abdul Salam ◽  
Jagnoor Jagnoor ◽  
Arun Teja ◽  
...  

Leptospirosis is a zoonotic disease of public health importance in India. A country-level evidence gap map was developed to identify gaps on epidemiology of leptospirosis. It is the first such on leptospirosis globally and on any single disease condition in India. The steps for development of evidence gap map were development of a framework to map evidence, retrieval of evidence, data extraction parameters and mapping of available evidence in evidence gap map framework. The prevalence evidence gap map consisted of 157 studies (102 in humans, 55 in animals, and 12 in both). The evidence gap map on risk factors had 120 studies (102 in humans, 11 in animals and 7 in both). There were inter-state differences in availability of research and disparity between animal and human research. Research on high-risk groups was limited and studies did not use the One Health approach to identify epidemiology, which can help understand the issue more comprehensively. The study demonstrates the potential of evidence gap maps to inform research priorities.


Sign in / Sign up

Export Citation Format

Share Document