scholarly journals pFiD188, the Linear Virulence Plasmid of Rhodococcus fascians D188

2012 ◽  
Vol 25 (5) ◽  
pp. 637-647 ◽  
Author(s):  
Isolde Francis ◽  
Annick De Keyser ◽  
Philippe De Backer ◽  
Carmen Simón-Mateo ◽  
Jutta Kalkus ◽  
...  

Rhodococcus fascians is currently the only phytopathogen of which the virulence genes occur on a linear plasmid. To get insight into the origin of this replicon and into the virulence strategy of this broad-spectrum phytopathogen, the sequence of the linear plasmid of strain D188, pFiD188, was determined. Analysis of the 198,917 bp revealed four syntenic regions with linear plasmids of R. erythropolis, R. jostii, and R. opacus, suggesting a common origin of these replicons. Mutational analysis of pFi_086 and pFi_102, similar to cutinases and type IV peptidases, respectively, showed that conserved region R2 was involved in plasmid dispersal and pointed toward a novel function for actinobacterial cutinases in conjugation. Additionally, pFiD188 had three regions that were unique for R. fascians. Functional analysis of the stk and nrp loci of regions U2 and U3, respectively, indicated that their role in symptom development was limited compared with that of the previously identified fas, att, and hyp virulence loci situated in region U1. Thus, pFiD188 is a typical rhodococcal linear plasmid with a composite structure that encodes core functions involved in plasmid maintenance and accessory functions, some possibly acquired through horizontal gene transfer, implicated in virulence and the interaction with the host.

2020 ◽  
Author(s):  
Jillian N. Socea ◽  
Grant R. Bowman ◽  
Helen J. Wing

AbstractVirB is a key regulator of virulence genes located on the large virulence plasmid (pINV) of the bacterial pathogen Shigella flexneri. VirB is unusual in that it is not related to other transcriptional regulators, instead, it belongs to a protein family that primarily functions in plasmid and chromosome partitioning; exemplified by ParB. Despite this, VirB does not function to segregate DNA, but rather counters transcriptional silencing of virulence genes mediated by the nucleoid structuring protein, H-NS. Since ParB localizes subcellularly as discrete foci in the bacterial cytoplasm, we chose to investigate the subcellular localization of VirB to gain novel insight into how VirB functions as a transcriptional anti-silencer. To do this, a GFP-VirB fusion that retains the regulatory activity of VirB and yet, does not undergo significant protein degradation in S. flexneri, was used. Surprisingly, discrete fluorescent foci were observed in live wild-type S. flexneri cells and an isogenic virB mutant using fluorescence microscopy. In contrast, foci were rarely observed (<10%) in cells cured of pINV. Moreover, in the context of the fusion, amino acid substitutions in the DNA binding domain of VirB resulted in the fluorescent signal becoming entirely diffuse. Combined, these data demonstrate that the VirB:DNA interactions required for the transcriptional anti-silencing activity of VirB on pINV are a prerequisite for the subcellular localization of VirB in the bacterial cytoplasm. The significance of these findings, in light of the anti-silencing activity of VirB, is discussed.ImportanceThis study reveals the subcellular localization of VirB, a key transcriptional regulator of virulence genes found on the large virulence plasmid in Shigella. Fluorescent signals generated by an active GFP-VirB fusion form 2, 3, or 4 discrete foci in the bacterial cytoplasm, predominantly at the quarter cell position. These signals are completely dependent upon VirB interacting with its DNA binding site found either on the virulence plasmid or an engineered surrogate. Our findings: 1) provide novel insight into VirB:pINV interactions, 2) suggest that VirB may have utility as a DNA marker, and 3) raise questions about how and why this anti-silencing protein that controls virulence gene expression on pINV of Shigella spp. forms discrete foci/hubs within the bacterial cytoplasm.


2020 ◽  
Author(s):  
Chaitra Shankar ◽  
Karthick Vasudevan ◽  
Jobin John Jacob ◽  
Stephen Baker ◽  
Barney J Isaac ◽  
...  

Hypervirulent K. pneumoniae (HvKp) is typically associated with ST23 clone; however, hvKp is also emerging from clones ST11, ST15 and ST147, which are also multi-drug resistant (MDR). Here, we aimed to characterise nine novel MDR hvKp isolates harbouring mosaic plasmids simultaneously carrying antimicrobial resistance (AMR) and virulence genes. Nine HvKp isolates obtained from hospitalised patients in southern India were characterized for antimicrobial susceptibility and hypervirulence phenotypes. All nine hvKp isolates were subjected to whole genome sequencing (WGS) using Ilumina HiSeq2500 and a subset of four were sequenced using Oxford Nanopore MinION. Among the nine isolates, seven were carbapenem-resistant, two of which carried blaNDM-5 on an IncFII plasmid and five carried blaOXA-232 on a ColKP3 plasmid. The virulence determinants were encoded in a mosaic plasmid (~320 Kbp) that formed as a result of its insertion in a IncFIB-IncHI1B plasmid co-integrate. The mosaic plasmid carried AMR genes (aadA2, armA, blaOXA-1, msrE, mphE, sul1 and dfrA14) in addition to rmpA2, iutA and iucABCD virulence genes. Interestingly the mosaic plasmid carried its own type IV-A3 CRISPR-cas system that is likely able to target the acquisition of IncF plasmid with the help of a traL spacer. The convergence of virulence and AMR is the biggest threat among invasive K. pneumoniae infections. However, increasing reports of the presence of mosaic plasmid carrying both AMR and virulence genes suggests MDR-hvKp isolates are no longer confined to selected clones and the containment of such isolates is very challenging.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Deepshikha Bhowmik ◽  
Shiela Chetri ◽  
Bhaskar Jyoti Das ◽  
Debadatta Dhar Chanda ◽  
Amitabha Bhattacharjee

Abstract Objective This study was designed to discover the dissemination of virulence genes in Methicillin-resistant Staphylococcus aureus from clinical, community and environmental settings. Results This study includes 1165 isolates collected from hospital, community and environmental settings. Among them sixty three were confirmed as MRSA with varied SCCmec types viz; type I, type II, type III, type IV, type V, type VI, type VII, type VIII and type XII. The virulence gene such as sea (n = 54), seb (n = 21), eta (n = 27), etb (n = 2), cna (n = 24), ica (n = 2) and tst (n = 30) was also revealed from this study. The study underscores coexistence of resistance cassette and virulence genes among clinical and environment isolates which is first of its kind from this part of the world.


2019 ◽  
Vol 82 (8) ◽  
pp. 1364-1368 ◽  
Author(s):  
RIZWANA TASMIN ◽  
PAUL A. GULIG ◽  
SALINA PARVEEN

ABSTRACT Salmonella enterica serovar Typhimurium is one of the leading causes of nontyphoidal gastroenteritis of humans in the United States. Commercially processed poultry carcasses are frequently contaminated with Salmonella serovar Kentucky in the United States. The aim of the study was to detect the Salmonella virulence plasmid containing the spv genes from Salmonella isolates recovered from commercially processed chicken carcasses. A total of 144 Salmonella isolates (Salmonella Typhimurium, n = 72 and Salmonella Kentucky, n = 72) were used for isolation of plasmids and detection of corresponding virulence genes (spvA, spvB, and spvC). Only four (5.5%) Salmonella Typhimurium isolates tested positive for all three virulence genes and hence were classified as possessing the virulence plasmid. All isolates of Salmonella Kentucky were negative for the virulence plasmid and genes. These results indicate that the virulence plasmid, which is very common among clinical isolates of Typhimurium and other Salmonella serovars (e.g., Enteritidis, Dublin, Choleraesuis, Gallinarum, Pullorum, and Abortusovis), may not be present in a significant portion of commercially processed chicken carcass isolates.


2002 ◽  
Vol 15 (4) ◽  
pp. 398-403 ◽  
Author(s):  
Karen Cornelis ◽  
Tania Maes ◽  
Mondher Jaziri ◽  
Marcelle Holsters ◽  
Koen Goethals

The phytopathogenic bacterium Rhodococcus fascians provokes shoot meristem formation and malformations on aerial plant parts, mainly at the axils. The interaction is accompanied by bacterial colonization of the plant surface and tissues. Upon infection, the two bacterial loci required for full virulence, fas and att, were expressed only at the sites of symptom development, although their expression profiles differed both spatially and temporally. The att locus was expressed principally in bacteria located on the plant surface at early stages of infection. Expression of the fas locus occurred throughout infection, mainly in bacteria that were penetrating, or had penetrated, the plant tissues and coincided with sites of meristem initiation and proliferation. The implications for the regulation of virulence genes of R. fascians during plant infection are discussed.


2001 ◽  
Vol 82 (4) ◽  
pp. 373-381 ◽  
Author(s):  
Shinji Takai ◽  
Norihisa Murata ◽  
Ryudai Kudo ◽  
Nobuhiro Narematsu ◽  
Tsutomu Kakuda ◽  
...  

2021 ◽  
Author(s):  
Jane Hawkey ◽  
Hugh Cottingham ◽  
Alex Tokolyi ◽  
Ryan R Wick ◽  
Louise M Judd ◽  
...  

Linear plasmids are extrachromosomal DNA that have been found in a small number of bacterial species. To date, the only linear plasmids described in the Enterobacteriaceae family belong to Salmonella, first found in Salmonella Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. We used this collection to search public sequence databases and discovered an additional 74 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function, however each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.


2021 ◽  
Author(s):  
Sheo Shankar Pandey ◽  
Connor Hendrich ◽  
Maxuel Andrade ◽  
Nian Wang

Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plants hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago, but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.


2020 ◽  
Author(s):  
Deepshikha Bhowmik ◽  
Shiela Chetri ◽  
Bhaskar Jyoti Das ◽  
Debadatta Dhar Chanda ◽  
Amitabha Bhattacharjee

Abstract Objective: This study was designed to discover the dissemination of virulence genes in Methicillin-resistant Staphylococcus aureus from clinical and environmental settings. Results: The virulence gene such as sea (n=54), seb (n=21), eta (n=27), etb (n=2), cna (n=24), ica (n=2) and tst (n=30) was revealed from this study. Different SCCmec types such as type I, type II, type III, type IV, type V, type VI, type VII, type VIII and type XII were detected among sixty three MRSA isolates where SCCmec type II having ST1551 and type V with ST2416 were found to be associated with multidrug resistance and were highly prevalent in the study area.


Sign in / Sign up

Export Citation Format

Share Document