scholarly journals Coi1-Dependent Signaling Pathway Is Not Required for Mi-1—Mediated Potato Aphid Resistance

2007 ◽  
Vol 20 (3) ◽  
pp. 276-282 ◽  
Author(s):  
Kishor K. Bhattarai ◽  
Qi-Guang Xie ◽  
Daniel Pourshalimi ◽  
Ted Younglove ◽  
Isgouhi Kaloshian

Tomato (Solanum lycopersicum) has a unique resistance gene, Mi-1, that confers resistance to animals from distinct taxa, nematodes, and piercing and sucking insects. Mi-1 encodes a protein with a nucleotide-binding site and leucine-rich repeat motifs. Early in the potato aphid (Macrosiphum euphorbiae)—tomato interactions, aphid feeding induces the expression of the jasmonic acid (JA)-regulated proteinase inhibitor genes, Pin1 and Pin2. The jai1-1 (jasmonic acid insensitive 1) tomato mutant, which is impaired in JA perception, was used to gain additional insight into the JA signaling pathway and its role in the Mi-1—mediated aphid resistance. The jai1-1 mutant has a deletion in the Coi1 gene that encodes a putative F-box protein. In this study, aphid colonization, survival, and fecundity were compared on wild-type tomato and jai1-1 mutant. In choice assays, the jai1-1 mutant showed higher colonization by potato aphids compared with wild-type tomato. In contrast, no-choice assays showed no difference in potato aphid survival or fecundity between jai1-1 and the wild-type parent. Plants homozygous for Mi-1 and for the jai1 mutation were not compromised in resistance to potato aphids, using either choice or no-choice assays. In addition, the accumulation of JA-regulated Pin1 transcripts after aphid feeding was Coi1 dependent. Taken together, these data indicate that, although potato aphids activate Coi1-dependent defense response in tomato, this response is not required for Mi-1—mediated resistance to aphids.

2006 ◽  
Vol 19 (6) ◽  
pp. 655-664 ◽  
Author(s):  
Qi Li ◽  
Qi-Guang Xie ◽  
Jennifer Smith-Becker ◽  
Duroy A. Navarre ◽  
Isgouhi Kaloshian

The tomato Mi-1 gene confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum euphorbiae), and whiteflies (Bemisia tabaci and B. tabaci biotype B). Resistance to potato aphid is developmentally regulated and is not associated with induction of a hypersensitive response. The NahG transgene that eliminates endogenous salicylic acid (SA) was used to test the role of the SA signaling pathway in the resistance mediated by Mi-1 to potato aphids. Aphids survived longer on NahG tomato plants than on wild type. However, aphid reproduction was not affected on NahG tomato. Aphid resistance in Mi-1 NahG plants was completely abolished and the phenotype was successfully rescued by application of BTH (benzo(1,2,3)-thiaiazole-7-carbothioic acid S-methyl ester), indicating that the SA signaling pathway is an important component of Mi-1-mediated aphid resistance. Using virus-induced gene silencing, one or more mitogen-activated protein kinase (MAPK) cascades required for Mi-1-mediated aphid resistance were identified. Silencing plants for MAPK kinase (LeMKK2) and MAPKs (LeMPK2 and LeMPK1, or LeMPK3) resulted in attenuation of Mi-1-mediated aphid resistance. These results further demonstrate that resistance gene-mediated signaling events against piercing-sucking insects are similar to those against other plant pathogens.


1997 ◽  
Vol 129 (2) ◽  
pp. 241-249 ◽  
Author(s):  
G. Boiteau ◽  
W.P.L. Osborn

AbstractAdult potato aphids, Macrosiphum euphorbiae (Thomas), caged on potato terminal leaflets treated systemically with imidacloprid solutions ranging between 5.4 × 10−4 and 5.4 × 10−8 mL per mL water showed a significant reduction in the distance they travelled, time taken to travel a given distance, and flight propensity but no significant differences in the frequency or duration of short probing behaviour. The frequency of adult apterous potato aphids colonizing untreated potato leaflets or leaflets treated with an imidacloprid solution (5.4 × 10−4 mL per mL water) was not significantly different, indicating no repellency. Potato aphids moving from systemically treated to untreated leaflets did not recover much and their reduced walking ability was maintained for days. A 3-day exposure to vapour from an imidacloprid solution (5.4 × 10−4 mL per mL water) did not produce significant mortality or changes in nymphal production. The daily cumulative mortality obtained by caging potato aphids on potato leaflets placed in an imidacloprid solution (5.4 × 10−7 mL per mL water) was similar to that obtained in the field, on 20-day-old plants treated at planting with imidacloprid applied at 0.02 g Ai/m. None of the rates of imidacloprid tested stimulated the dispersal of apterous or alate potato aphids.


2020 ◽  
Vol 21 (4) ◽  
pp. 1446 ◽  
Author(s):  
Jia Wang ◽  
Li Song ◽  
Xue Gong ◽  
Jinfan Xu ◽  
Minhui Li

Jasmonic acid (JA) is an endogenous growth-regulating substance, initially identified as a stress-related hormone in higher plants. Similarly, the exogenous application of JA also has a regulatory effect on plants. Abiotic stress often causes large-scale plant damage. In this review, we focus on the JA signaling pathways in response to abiotic stresses, including cold, drought, salinity, heavy metals, and light. On the other hand, JA does not play an independent regulatory role, but works in a complex signal network with other phytohormone signaling pathways. In this review, we will discuss transcription factors and genes involved in the regulation of the JA signaling pathway in response to abiotic stress. In this process, the JAZ-MYC module plays a central role in the JA signaling pathway through integration of regulatory transcription factors and related genes. Simultaneously, JA has synergistic and antagonistic effects with abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and other plant hormones in the process of resisting environmental stress.


2019 ◽  
Vol 20 (12) ◽  
pp. 2917 ◽  
Author(s):  
Yuya Uji ◽  
Keita Kashihara ◽  
Haruna Kiyama ◽  
Susumu Mochizuki ◽  
Kazuya Akimitsu ◽  
...  

Jasmonic acid (JA) is a plant hormone that plays an important role in the defense response and stable growth of rice. In this study, we investigated the role of the JA-responsive valine-glutamine (VQ)-motif-containing protein OsVQ13 in JA signaling in rice. OsVQ13 was primarily located in the nucleus and cytoplasm. The transgenic rice plants overexpressing OsVQ13 exhibited a JA-hypersensitive phenotype and increased JA-induced resistance to Xanthomonas oryzae pv. oryzae (Xoo), which is the bacteria that causes rice bacterial blight, one of the most serious diseases in rice. Furthermore, we identified a mitogen-activated protein kinase, OsMPK6, as an OsVQ13-associating protein. The expression of genes regulated by OsWRKY45, an important WRKY-type transcription factor for Xoo resistance that is known to be regulated by OsMPK6, was upregulated in OsVQ13-overexpressing rice plants. The grain size of OsVQ13-overexpressing rice plants was also larger than that of the wild type. These results indicated that OsVQ13 positively regulated JA signaling by activating the OsMPK6–OsWRKY45 signaling pathway in rice.


2008 ◽  
Vol 21 (9) ◽  
pp. 1205-1214 ◽  
Author(s):  
Kishor K. Bhattarai ◽  
Qi-Guang Xie ◽  
Sophie Mantelin ◽  
Usha Bishnoi ◽  
Thomas Girke ◽  
...  

Responses of resistant (Mi-1/Mi-1) and susceptible (mi-1/ mi-1) tomato (Solanum lycopersicum) to root-knot nematodes (RKNs; Meloidogyne spp.) infection were monitored using cDNA microarrays, and the roles of salicylic acid (SA) and jasmonic acid (JA) defense signaling were evaluated in these interactions. Array analysis was used to compare transcript profiles in incompatible and compatible interactions of tomato roots 24 h after RKN infestation. The jai1 and def1 tomato mutant, altered in JA signaling, and tomato transgenic line NahG, altered in SA signaling, in the presence or absence of the RKN resistance gene Mi-1, were evaluated. The array analysis identified 1,497 and 750 genes differentially regulated in the incompatible and compatible interactions, respectively. Of the differentially regulated genes, 37% were specific to the incompatible interactions. NahG affected neither Mi-1 resistance nor basal defenses to RKNs. However, jai1 reduced tomato susceptibility to RKNs while not affecting Mi-1 resistance. In contrast, the def1 mutant did not affect RKN susceptibility. These results indicate that JA-dependent signaling does not play a role in Mi-1-mediated defense; however, an intact JA signaling pathway is required for tomato susceptibility to RKNs. In addition, low levels of SA might be sufficient for basal and Mi-1 resistance to RKNs.


2021 ◽  
Author(s):  
Yutao Zhu ◽  
Xiaoqian Hu ◽  
Yujiao Jia ◽  
Linying Gao ◽  
Yakun Pei ◽  
...  

Abstract Patatin-like proteins (PLPs) have nonspecific lipid acyl hydrolyze (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well elucidated. However, the function of PLPs in plant defense response against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) patatin-like protein gene GhPLP2. GhPLP2 expression was induced upon treatment with pathogens Verticillium dahliae, Fusarium xysporum, and signaling molecules jasmonic acid (JA), ethylene in cotton plants. Subcellular localization revealed that GhPLP2 was localized in the cell wall and plasma membrane. GhPLP2-silenced cotton plants showed reduced resistance to V. dahliae infection, while overexpression of GhPLP2 in Arabidopsis enhanced the resistance to V. dahliae, with mild symptoms, decreased disease index, and fungal biomass. Hypersensitive response, callose deposition, and H2O2 accumulation triggered by V. dahlia elicitor were reduced in silenced cotton plants. GhPLP2-transgenic Arabidopsis had more accumulation of JA and JA synthesis precursor linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) than control plants. Consistently, linoleic acid, α-linolenic acid, and jasmonic acid have decreased in GhPLP2-silenced cotton plants. Further, the gene expression of the JA signaling pathway is up-regulated in transgenic Arabidopsis and down-regulated in silenced cotton plants, respectively. These results showed that GhPLP2 is involved in plants' resistance to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activation of the JA signaling pathway.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1532 ◽  
Author(s):  
Ning Li ◽  
Joachim F. Uhrig ◽  
Corinna Thurow ◽  
Li-Jun Huang ◽  
Christiane Gatz

The phytohormone jasmonic acid (JA) plays an important role in various plant developmental processes and environmental adaptations. The JA signaling pathway has been well-elucidated in the reference plant Arabidopsis thaliana. It starts with the perception of the active JA derivative, jasmonoyl-isoleucine (JA-Ile), by the F-box protein COI1 which is part of the E3-ligase SCFCOI1. Binding of JA-Ile enables the interaction between COI1 and JAZ repressor proteins. Subsequent degradation of JAZ proteins leads to the activation of transcription factors like e.g., MYC2. Here we demonstrate that the pathway can be reconstituted in transiently transformed protoplasts. Analysis of the stability of a JAZ1-fLuc fusion protein as a function of COI1 transiently expressed in coi1 protoplasts allows structure function analysis of both JAZs and COI1. Using this system, we found that conserved cysteines in COI1 influence steady state COI1 protein levels. Using a luciferase reporter gene under the control of the JAZ1 promoter enable to address those features of JAZ1 that are required for MYC2 repression. Interestingly, the conserved TIFY-motif previously described to interact with NINJA to recruit the corepressor TOPLESS is not necessary for repression. This result is in favor of the alternative repression mode that proposes a direct competition between repressive JAZs and promotive MEDIATOR25 at MYC2. Finally, using protoplasts from the aos coi1 double mutant, which is deficient in JA synthesis and perception, we provide a system that has the potential to study the activity of different COI1 variants in the presence of different ligands.


1997 ◽  
Vol 75 (9) ◽  
pp. 1396-1403 ◽  
Author(s):  
Gilles Boiteau

The relative ability of apterous and alate morphs of aphids to disperse from one potato leaflet to another was similar within species. Three species were tested: the buckthorn aphid, Aphis nasturtii Kaltenbach, the potato aphid, Macrosiphum euphorbiae (Thomas), and the green peach aphid, Myzus persicae (Sulzer). The average percentage of aphids moving daily from one leaflet to another never exceeded 2.5% for nymphs of the three species, but reached 45% for the adult winged buckthorn aphid. During the first half of the reproductive period, adult potato aphids were 1.5 times as likely as buckthorn aphids and twice as likely as green peach aphids to relocate daily. In a flight chamber, buckthorn aphids flew 4.5 times longer than green peach or potato aphids. The maiden flights of these summer forms were interrupted by repeated landings lasting less than 2 min. The maiden flights were interrupted more than twice as often for the buckthorn aphid as for the potato aphid. The number of flight interruptions was intermediate for the green peach aphid. Selected dispersal parameters for these aphid species are compared with those for the black bean aphid, Aphis fabae Scopoli, an occasional potato-colonizing species. The percentage of green peach and potato aphids taking flight was significantly correlated with the temperature in the flight chamber. The implication of these results for the distribution of aphid populations and the epidemiology of viral diseases is discussed.


1984 ◽  
Vol 116 (8) ◽  
pp. 1069-1075 ◽  
Author(s):  
Gregory P. Walker ◽  
Laurence V. Madden ◽  
Donald E. Simonet

AbstractSpatial dispersion of potato aphids was studied in fields of processing-tomatoes for 2 years to develop a sequential sampling scheme for the aphid. Potato aphids were found on upper, middle, and lower leaf strata in the percentages 60, 31, and 8. Dispersion was clumped, apterates more so than alates. Among-plant variance was generally greater than within-plant variance. There was a good linear relationship between mean crowding and the population mean and an excellent linear fit between log variance and log mean on all leaf strata for green and pink forms of the aphid and for alates and apterates. The log variance – log mean relationship was used as a basis for sequential sampling.


2020 ◽  
Author(s):  
Yohei Mizuno ◽  
Aino Komatsu ◽  
Shota Shimazaki ◽  
Xiaonan Xie ◽  
Kimitsune Ishizaki ◽  
...  

AbstractKARRIKIN INSENSITIVE2 (KAI2) was first identified in Arabidopsis thaliana as a receptor of karrikin, a smoke-derived germination stimulant. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2-ligand (KL). Upon KAI2 activation, signals are transmitted through degradation of D53/SMXL proteins via ubiquitination by a Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. All components in the KL signaling pathway exist in the liverwort Marchantia polymorpha, namely MpKAI2A and MpKAI2B, MpMAX2 encoding the F-box protein, and MpSMXL, indicating that the signaling pathway became functional in the common ancestor of bryophytes and seed plants. Genetic analysis using knock-out mutants of these KL signaling genes, produced using the CRISPR system, indicated that MpKAI2A, MpMAX2 and MpSMXL act in the same genetic pathway and control early gemma growth. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants caused phenotypes resembling those of the Mpkai2a and Mpmax2 mutants. In addition, Citrine fluorescence was detected in tobacco cells transiently transformed with the 35S:MpSMXL-Citrine gene construct and treated with MG132, a proteasome inhibitor. On the other hand, introduction of 35S:MpSMXLd53-Citrine conferred Citrine fluorescence without MG132 treatment. These findings imply that MpSMXL is subjected to degradation, and that degradation of MpSMXL is crucial for KL signaling in M. polymorpha. We also showed that MpSMXL is negatively regulated by KL signaling. Taken together, this study demonstrates that basic mechanisms in the KL signaling pathway are conserved in M. polymorpha.


Sign in / Sign up

Export Citation Format

Share Document