Resistance to Frogeye Leaf Spot in Selected Soybean Accessions in MG I through MG VI

2012 ◽  
Vol 13 (1) ◽  
pp. 13 ◽  
Author(s):  
Alemu Mengistu ◽  
Jason Bond ◽  
Rouf Mian ◽  
Randall Nelson ◽  
Grover Shannon ◽  
...  

Frogeye leaf spot (FLS) caused by Cercospora sojina Hara is a disease of soybean [Glycine max (L.) Merr.] that causes significant seed yield loss in warm, humid environments worldwide. The Rcs3 gene in soybean has been reported to condition resistance to all known races of C. sojina. The objectives of this study were to: (i) identify maturity group (MG) I to VI accessions resistant to C. sojina race 11 by field screening at two locations; and (ii) determine if the FLS resistance of the symptomless soybean accessions is likely to be conditioned by the Rcs3 allele. A total of 260 accessions including 12 differentials were evaluated for reaction to race 11 in field trials in Missouri and Illinois during 2009, and 20 accessions that did not develop symptoms were retested in 2010 to validate their resistance. The 20 accessions remained resistant and were tested for the potential presence of Rcs3 allele using molecular markers; and none was predicted to carry the Rcs3 allele. These accessions may contain novel loci for FLS resistance and may be used to broaden the base for developing soybean cultivars with frogeye leaf spot resistance. Accepted for publication 16 April 2012. Published 21 May 2012.

Plant Disease ◽  
1998 ◽  
Vol 82 (9) ◽  
pp. 1017-1021 ◽  
Author(s):  
M. A. R. Mian ◽  
H. R. Boerma ◽  
D. V. Phillips ◽  
M. M. Kenty ◽  
G. Shannon ◽  
...  

Frogeye leaf spot (FLS) caused by Cercospora sojina Hara is a disease of soybean (Glycine max (L.) Merr.) that causes significant seed yield losses in warm, humid environments of southeastern United States. The Rcs3 gene in soybean has been reported to condition resistance to all known races of C. sojina. The objectives of this study were to determine the effectiveness of Rcs3 in limiting seed yield loss due to FLS and to compare the seed yield of the resistant and susceptible near-isolines (NILs) in the absence of significant FLS disease. Four pairs of NILs—Colquitt/Colquitt-Rcs3, Gordon/Gordon-Rcs3, Thomas/Thomas-Rcs3, and Wright/Wright-Rcs 3—were evaluated in 23 field experiments in Alabama, Florida, Georgia, Louisiana, Mississippi, and South Carolina during 1992 to 1994. The amount of damage to susceptible soybean caused by FLS was dependent on the specific environment. All four of the Rcs3 NILs were resistant to the prevalent races of FLS in all environments. In the absence of significant FLS disease, each of the Rcs3 NILs was at least equal to the respective susceptible line in its seed yield. In the presence of FLS infestation, the susceptible lines suffered significant seed yield loss (up to 31%) compared to their Rcs3 NILs. The effect of FLS on seed yield was dependent on cumulative disease severity over the growing season. Thus, the area under disease progress curve was more useful than percent of leaf area infected at the end of the growing season (R7 stage of development) in explaining the seed yield loss due to FLS.


2002 ◽  
Vol 59 (4) ◽  
pp. 701-705 ◽  
Author(s):  
Carlos Alberto Osório Martins ◽  
Carlos Sigueyuki Sediyama ◽  
Maria Goreti de Almeida Oliveira ◽  
Múcio Silva Reis ◽  
Valterley Soares Rocha ◽  
...  

The soybean [Glycine max (L.) Merrill] crop holds a prominent position in the Brazilian economy because of the extension of the planted area and volume of grain production, but the beany flavor has been a limiting factor for soybean derivatives consumption by western population. This flavor is produced mainly by action of lipoxygenase enzymes (Lox1, Lox2 and Lox3), present in some commercial varieties. The genetic elimination of the alleles that codify these enzymes is the most appropriate way to avoid problems associated to this deleterious flavor. To elucidate the effect of seed lipoxygenase elimination on the resistance to plant pathogens, normal varieties of soybean (FT-Cristalina RCH, Doko RC and IAC-12) and their backcross-derived lines, both with the three lipoxygenases present in their seeds (triple-positive, TP) and without the three lipoxygenases (triple-null, TN), were tested for their resistance to stem canker (Diaporthe phaseolorum f.sp. meridionalis), frogeye leaf spot (Cercospora sojina Hara), and powdery mildew (Microsphaera diffusa Cke. & Pk.). All genetic materials studied were resistant to stem canker. FT-Cristalina RCH and Doko-RC and their TP and TN lines were resistant to frogeye leaf spot. IAC-12 and its derived lines not only presented a higher disease index, but also the derived lines, TP and TN, were more susceptible, indicating the loss of genes for disease resistance in the backcrosses. There was no association between the elimination of lipoxygenases from the seeds with the resistance to frogeye leaf spot. In relation to the powdery mildew, TP or TN lines presented similar or higher resistance than their respective recurrent parents whose susceptibility appeared in the following order: IAC-12, less susceptible, Doko-RC, intermediate and FT-Cristalina RCH, more susceptible.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1847
Author(s):  
Olena Sobko ◽  
Andreas Stahl ◽  
Volker Hahn ◽  
Sabine Zikeli ◽  
Wilhelm Claupein ◽  
...  

The cultivation area of soybean (Glycine max (L.) Merr) is increasing in Germany as a way to ensure self-sufficiency through its use as feed and food. However, climatic conditions needed for soybean cultivation are not appropriate in all parts of the country. The objective of this study was to determine the influence of solar radiation, temperature, and precipitation on soybean seed productivity and quality in central and south Germany. A multi-factorial field trial was carried out with three replicates at four locations in 2016 and five locations in 2017, testing 13 soybean varieties from the maturity groups MG 00 and MG 000. Considering all the tested factors, “variety” was highly significant concerning protein content (Ø 41.1% dry matter (DM)) and oil content (Ø 19.1% in DM), but not seed yield (Ø 40.5 dt ha−1).The broad sense heritability of protein content was H2 = 0.80 and of oil content H2 = 0.7. Protein and oil content were significantly negatively correlated (r = −0.82). Seed yield was significantly positively correlated with solar radiation (r = 0.32) and precipitation (r = 0.33), but significantly negatively with Crop Heat Units (CHU) (r = −0.42). Over both experimental years, varieties from maturity group MG 00 were less significantly correlated with the tested environmental factors than varieties from maturity group MG 000. None of the environmental factors tested significantly increased the protein or oil content of soybean. In growing areas with heat periods during ripening, protein content tended to be higher than in cooler areas; in areas with high solar radiation during flowering, protein content tended to be reduced.


1980 ◽  
Vol 60 (4) ◽  
pp. 1315-1326 ◽  
Author(s):  
B. A. McBLAIN ◽  
D. J. HUME

The physiology of three soybean (Glycine max (L). Merrill) cultivars of Maturity Group 00 was studied to determine why the new cultivars Maple Arrow and McCall outyield the older cultivar Altona. Field trials were conducted at Elora, Ontario, in 1977 and 1978. The seed yields of the new cultivars averaged 12% higher than Altona over both years, although the three cultivars were within 3 days of the same maturity. The higher yields in the new cultivars appeared to be related to consistently longer bean-filling periods than in Altona, although a difference (P < 0.05) was detected only in 1978. Rates of bean filling in the new cultivars were no greater than in Altona, which also indicated that longer bean-filling periods contributed to higher yields in the new cultivars. Flowering dates for cultivars were not different. Similar maturity dates indicated that the new cultivars had shorter periods than Altona from maximum bean dry weight to final maturity. Other attributes differed little among cultivars in either year. Total dry matter accumulations were similar until bean filling began. Leaflet areas and dry weights, leaf area durations and harvest indices also did not differ. The results suggested that a long bean-filling period was a desirable trait in early-maturing soybeans.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1496
Author(s):  
Srinivasa R. Pinnamaneni ◽  
Saseendran S. Anapalli ◽  
Daniel K. Fisher ◽  
Krishna N. Reddy

Introducing alternative cultivars with enhanced water use efficiencies can help alleviate pressure on groundwater for crop irrigations in Mississippi (MS) Delta. A two-year field study was conducted in 2019–2020 to compare the water use efficiencies (WUE) of recently released and pre-released soybean {Glycine max (L.) Merr.} cultivars in maturity group (MG) III (‘P37A78’, ‘LG03-4561-14’), IV (‘Dyna-gro 4516x’, ‘DS25-1, DT97-4290’), and V (‘S12-1362’, ‘S14-16306’) in the MS Delta. The experimental design was a split-plot with cultivar as the first factor and the second factor was water variant irrigation (IR) and no irrigation (RF, rainfed), replicated three times. The MG IV cultivar Dyna-gro 4516x recorded the highest grain yield and WUE: grain yields were 4.58 Mg ha−1 and 3.89 Mg ha−1 under IR and RF, respectively in 2019, and 4.74 Mg ha−1 and 4.35 Mg ha−1 in 2020. The WUE were 7.2 and 6.9 kg ha−1 mm−1, respectively, in 2019 under IR and RF, and 13.4 and 16.9 kg ha−1 mm−1 in 2020. The data reveals that ‘Dyna-gro 4516x’ (MG IV), ‘LG03-4561-14’ (MG III), and ‘P37A78’ (MG III) are best adapted to the early soybean production system (ESPS) in MS Delta region for sustainable production for conserving water resources.


2016 ◽  
Vol 30 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Ti Zhang ◽  
Eric N. Johnson ◽  
Christian J. Willenborg

Desiccants are currently used to improve lentil dry-down prior to harvest. Applying desiccants at growth stages prior to maturity may result in reduced crop yield and quality, and leave unacceptable herbicide residues in seeds. There is little information on whether various herbicides applied alone or as a tank-mix with glyphosate have an effect on glyphosate residues in harvested seed. Field trials were conducted at Saskatoon and Scott, Saskatchewan, Canada, from 2012 to 2014 to determine whether additional desiccants applied alone or tank mixed with glyphosate improve crop desiccation and reduce the potential for unacceptable glyphosate residue in seed. Glufosinate and diquat tank mixed with glyphosate were the most consistent desiccants, providing optimal crop dry-down and a general reduction in glyphosate seed residues without adverse effects on seed yield and weight. Saflufenacil provided good crop desiccation without yield loss, but failed to reduce glyphosate seed residues consistently. Pyraflufen-ethyl and flumioxazin applied alone or tank mixed with glyphosate were found to be inferior options for growers as they exhibited slow and incomplete crop desiccation, and did not decrease glyphosate seed residues. Based on results from this study, growers should apply glufosinate or diquat with preharvest glyphosate to maximize crop and weed desiccation, and minimize glyphosate seed residues.


1991 ◽  
Vol 71 (3) ◽  
pp. 863-864
Author(s):  
N. R. Bradner ◽  
R. D. Simpson ◽  
A. A. Hadlock

NattoKing K87, a Maturity Group I soybean (Glycine max (L.) Merr.) cultivar, yields more, has smaller seeds, lodges less and matures later than Canatto. Key words: Glycine max, NattoKing K87 cultivar, cultivar description, soybean


1991 ◽  
Vol 71 (3) ◽  
pp. 855-856 ◽  
Author(s):  
N. R. Bradner ◽  
R. D. Simpson ◽  
A. A. Hadlock

NattoKing K86 is a Maturity Group 00 soybean (Glycine max (L.) Merr.) cultivar having higher yield performance, smaller seed size, and later maturity than Canatto. Key words: Glycine max, NattoKing K86 cultivar, cultivar description, soybean


Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 544-550 ◽  
Author(s):  
F. Zeng ◽  
E. Arnao ◽  
G. Zhang ◽  
G. Olaya ◽  
J. Wullschleger ◽  
...  

Frogeye leaf spot of soybean, caused by the fungus Cercospora sojina, reduces soybean yields in most of the top-producing countries around the world. Control strategies for frogeye leaf spot can rely heavily on quinone outside inhibitor (QoI) fungicides. In 2010, QoI fungicide-resistant C. sojina isolates were identified in Tennessee for the first time. As the target of QoI fungicides, the cytochrome b gene present in fungal mitochondria has played a key role in the development of resistance to this fungicide class. The cytochrome b genes from three QoI-sensitive and three QoI-resistant C. sojina isolates were cloned and sequenced. The complete coding sequence of the cytochrome b gene was identified and found to encode 396 amino acids. The QoI-resistant C. sojina isolates contained the G143A mutation in the cytochrome b gene, a guanidine to cytosine transversion at the second position in codon 143 that causes an amino acid substitution of alanine for glycine. C. sojina-specific polymerase chain reaction primer sets and TaqMan probes were developed to efficiently discriminate QoI-resistant and -sensitive isolates. The molecular basis of QoI fungicide resistance in field isolates of C. sojina was identified as the G143A mutation, and specific molecular approaches were developed to discriminate and to track QoI-resistant and -sensitive isolates of C. sojina.


Sign in / Sign up

Export Citation Format

Share Document