scholarly journals The role of cyclooxygenase‐2 in berberine induced apoptosis and inhibited cell migration of human gastric adenocarcinoma RF‐1 and RF‐48 cell lines

2006 ◽  
Vol 20 (5) ◽  
Author(s):  
CHUN‐SHU YU ◽  
Hsiu‐Maan Kuo ◽  
Jing‐Gung Chung
2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


2006 ◽  
Vol 203 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Ronit Vogt Sionov ◽  
Orly Cohen ◽  
Shlomit Kfir ◽  
Yael Zilberman ◽  
Eitan Yefenof

The mechanisms by which glucocorticoid receptor (GR) mediates glucocorticoid (GC)-induced apoptosis are unknown. We studied the role of mitochondrial GR in this process. Dexamethasone induces GR translocation to the mitochondria in GC-sensitive, but not in GC-resistant, T cell lines. In contrast, nuclear GR translocation occurs in all cell types. Thymic epithelial cells, which cause apoptosis of the PD1.6 T cell line in a GR-dependent manner, induce GR translocation to the mitochondria, but not to the nucleus, suggesting a role for mitochondrial GR in eliciting apoptosis. This hypothesis is corroborated by the finding that a GR variant exclusively expressed in the mitochondria elicits apoptosis of several cancer cell lines. A putative mitochondrial localization signal was defined to amino acids 558–580 of human GR, which lies within the NH2-terminal part of the ligand-binding domain. Altogether, our data show that mitochondrial and nuclear translocations of GR are differentially regulated, and that mitochondrial GR translocation correlates with susceptibility to GC-induced apoptosis.


2019 ◽  
Vol 20 (23) ◽  
pp. 6077 ◽  
Author(s):  
Rocio Cikutović-Molina ◽  
Andres A. Herrada ◽  
Wendy González ◽  
Nelson Brown ◽  
Leandro Zúñiga

Incidence and mortality of gastric cancer is increasing worldwide, in part, because of the lack of new therapeutic targets to treat this disease. Different types of ion channels participate in the hallmarks of cancer. In this context, ion channels are known to exert control over the cell cycle, mechanisms that support survival, angiogenesis, migration, and cell invasion. In particular, TASK-3 (KCNK9), a member of the K2P potassium channel family, has attracted much interest because of its oncogenic properties. However, despite multiple lines of evidence linking TASK-3 to tumorigenesis in various types of cancer, its relationship with gastric cancer has not been fully examined. Therefore, we set out to assess the effect of TASK-3 gene knockdown on KATO III and MKN-45 human gastric adenocarcinoma cell lines by using a short hairpin RNA (shRNA)-mediated knockdown. Our results demonstrate that knocking down TASK-3 reduces cell proliferation and viability because of an increase in apoptosis without an apparent effect on cell cycle checkpoints. In addition, cell migration and invasion are reduced after knocking down TASK-3 in these cell lines. The present study highlights TASK-3 as a key protein involved in migration and cell survival in gastric cancer and corroborates its potential as a therapeutic target for gastric cancer treatment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 631-631
Author(s):  
Steven Le Gouill ◽  
Klaus Podar ◽  
Martine Amiot ◽  
Teru Hideshima ◽  
Dharminder Chauhan ◽  
...  

Abstract Vascular endothelial growth factor (VEGF) induces proliferation of MM cells and induces interleukin-6 (IL-6) secretion in a paracrine loop involving MM cells and bone marrow stromal cells. In turn, IL-6 triggers multiple myeloma (MM) cell proliferation and also protects against apoptosis by upregulating Myeloid-cell-leukemia 1 (Mcl-1), a critical survival protein in MM cells. The goal of our study was to investigate the role of Mcl-1 in VEGF induced-proliferation and protection against apoptosis. Using two murine embryonic fibroblast cell lines as a model (a Mcl-1 deleted cell line and its wild type: Mcl-1Δ/null and Mcl-1wt/wt MEFs, respectively), we here demonstrate that deletion of Mcl-1 reduces fetal bovine serum (FBS), VEGF, and IL-6 induced-proliferation. In addition, we demonstrate that the percentage of cells in S phase is lower in Mcl-1Δ/null compared to Mcl-1wt/wt MEFs (21% (+/−1) versus 30% (+/− 3), respectively). Taken together, these results demonstrate that Mcl-1 is required to mediate VEGF, Il-6 and FBS-induced-proliferation and cell cycle progression. To highlight the key anti-apoptotic role of Mcl-1 in MM cells, humans MM1s cells were transfected with Mcl-1 siRNA. Specific inhibition of Mcl-1 was associated with decreased proliferation (42% and 61% decreases at 24 and 48 h, respectively) and induction of apoptosis (subG1 peak: 22% and 41% in Mcl-1 siRNA transfected cells versus 15% and 15 % in non-transfected cells at 24 and 48 h, respectively), confirming that Mcl-1 is critical for both proliferation and protection against apoptosis in MM cells. In 3 human MM cell lines (MM1s, U266 and MM1R) and MM patient cells we next showed that Mcl-1 protein expression, but not other bcl-2 family members, is upregulated by VEGF in a time and dose manner; and conversely that the pan-VEGF inhibitor GW654652, blocks VEGF induced-upregulation of Mcl-1. Furthermore using flow cytometry with a double staining (CD38-FITC and Apo 2.7-PE), we demonstrate that VEGF protects MM patient cells from FBS-starvation-induced-apoptosis: the percentage of apoptotic MM patient cells (CD38++ and Apo 2.7+) in non starved medium (RPMI 1640 supplemented with 10% FBS) was 15% versus 93% in starved medium (RPMI 1640 supplemented with FBS 2%), and 48% in starved medium supplemented with 25ng/ml VEGF. In conclusion, our study demonstrates that VEGF protects MM cells against apoptosis, and that VEGF-induced MM cell proliferation and survival is mediated via Mcl-1. these studies provide the preclinical framework for novel therapeutics targeting both Mcl-1 and/or VEGF to improve patient outcome in MM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1517-1517
Author(s):  
Mario I. Vega ◽  
Ali R. Jazirehi ◽  
Sara Huerta-Yepez ◽  
Benjamin Bonavida

Abstract We have recently reported that treatment of B-NHL cell lines with rituximab sensitizes the tumor cells to both chemotherapy and Fas-induced apoptosis (Jazirehi and Bonavida, 2005, Oncogene, 24:2121–2145). This study investigated the underlying molecular mechanism of rituximab-mediated reversal of resistance. Treatment of B-NHL cell lines inhibited the constitutively activated NF- κB. Cells expressing dominant active IκB or treated with NF-κB specific inhibitors were sensitized to both drugs and FasL agonist mAb (CH-11)-induced apoptosis. Downregulation of Bcl-xL expression via inhibition of NF-κB activity correlated with chemosensitivity. The direct role of Bcl-xL in chemoresistance was demonstrated by the use of Bcl-xL overexpressing Ramos cells, Ramos HA-BclxL (gift from Genhong Cheng, UCLA), which were not sensitized by rituximab to drug-induced apoptosis. However, inhibition of Bcl-xL in Ramos HA-Bcl-x resulted in sensitization to drug-induced apoptosis. The role of Bcl-xL expression in the regulation of Fas resistance was not apparent as Ramos HA-Bcl cells were as sensitive as the wild type cells to CH-11-induced apoptosis. Several lines of evidence support the direct role of the transcription repressor Yin-Yang 1 (YY1) in the regulation of resistance to CH-11-induced apoptosis. Inhibition of YY1 activity by either rituximab, the NO donor DETANONOate, or following transfection with YY1 siRNA all resulted in upregulation of Fas expression and sensitization to CH-11-induced apoptosis. These findings suggest two complementary mechanisms underlying the chemo-sensitization and immuno-sensitization of B NHL cells by rituximab via inhibition of NF-κB. The regulation of chemoresistance by NF-κB is mediated via Bcl-xL expression whereas the regulation of Fas resistance by NF-κB is mediated via YY1 expression and activity. These findings suggest that drug-resistant NHL tumor cells may be sensitive to immune-mediated therapeutics.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 891-891
Author(s):  
Katia Beider ◽  
Valeria Voevoda ◽  
Hanna Bitner ◽  
Evgenia Rosenberg ◽  
Hila Magen ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a neoplastic disorder that is characterized by clonal proliferation of plasma cells in the bone marrow (BM). Despite the initial efficacious treatment, MM patients often become refractory to common anti-MM drugs, therefore novel therapies are in need. Pan-histone deacetylase (HDAC) inhibitor panobinostat exerts multiple cytotoxic actions in MM cells in vitro, and was approved for the treatment of relapsed/refractory MM in combination with bortezomib and dexamethasone. Although having promising anti-MM properties, panobinostat lacks therapeutic activity as monotherapy. The aim of the current study was to elucidate the mechanisms underlying MM resistance to panobinostat and to define strategies to overcome it. Results: Panobinostat at the low concentrations (IC50 5-30 nM) suppressed the viability in MM cell lines (n=7) and primary CD138+ cells from MM patients (n=8) in vitro. Sensitivity to panobinostat correlated with reduced expression of chemokine receptor CXCR4, while overexpression of CXCR4 or its ligand CXCL12 in RPMI8226 and CAG MM cell lines significantly (p<0.001) increased their resistance to panobinostat, pointing to the role of the CXCR4 axis in HDACi response. Notably, similar expression levels of class I HDACs (HDAC1-3) were detected in MM cells with either low or high CXCR4. Interaction with BM stromal cells that represent the source of CXCL12 also protected MM cells from panobinostat-induced apoptosis, further strengthening a role for CXCR4 downstream pathway. Decreased sensitivity to cytotoxic effect was concomitant with reduced histone (H3K9 and H4K8) acetylation in response to panobinostat treatment. In addition, resistance to HDACi was associated with the reversible G0/G1 cell growth arrest, whereas sensitivity was characterized by apoptotic cell death. Analysis of intra-cellular signaling mediators involved in CXCR4-mediated HDACi resistance revealed the pro-survival AKT/mTOR pathway to be regulated by both CXCR4 over-expression and interaction with BMSCs. Combining panobinostat with mTOR inhibitor everolimus abrogated the resistance and induced synergistic cell death of MM cell lines and primary MM cells, but not of normal mononuclear cells (CI<0.4). This effect was concurrent with the increase in DNA double strand breaks, histone H2AX phosphorylation, loss of Dψm, cytochrome c release, caspase 3 activation and PARP cleavage. The increase in DNA damage upon combinational treatment was not secondary to the apoptotic DNA fragmentation, as it occurred similarly when apoptosis onset was blocked by caspase inhibitor z-VAD-fmk. Kinetics studies also confirmed that panobinostat-induced DNA damage preceded apoptosis induction. Strikingly, combined panobinostat/everolimus treatment resulted in sustained DNA damage and irreversible suppression of MM cell proliferation accompanied by robust apoptosis, in contrast to the modest effects induced by single agent. Gene expression analysis revealed distinct genetic profiles of single versus combined exposures. Whereas panobinostat increased the expression of cell cycle inhibitors GADD45G and p21, co-treatment with everolimus abrogated the increase in p21 and synergistically downregulated DNA repair genes, including RAD21, Ku70, Ku80 and DNA-PKcs. Furthermore, combined treatment markedly decreased both mRNA and protein expression of anti-apoptotic factors survivin and BCL-XL, checkpoint regulator CHK1, and G2/M-specific factors PLK1, CDK1 and cyclin B1, therefore suppressing the DNA damage repair and inhibiting mitotic progression. Given the anti-apoptotic role of p21, the synergistic lethal effect of everolimus could be attributed to its ability to suppress p21 induction by panobinostat ensuing the shift in the DNA damage response toward apoptosis. Conclusions: Collectively, our findings indicate that CXCR4/CXCL12 activity promotes the resistance of MM cells to HDACi with panobinostat through mTOR activation. Inhibition of mTOR by everolimus synergizes with panobinostat by simultaneous suppression of p21, G2/M mitotic factors and DNA repair machinery, rendering MM cells incapable of repairing accumulated DNA damage and promoting their apoptosis. Our results unravel the mechanism responsible for strong synergistic anti-MM activity of dual HDAC and mTOR inhibition and provide the rationale for a novel therapeutic strategy to eradicate MM. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11101-11101
Author(s):  
Erica Michelle Stringer ◽  
Maxwell N. Skor ◽  
Gini F. Fleming ◽  
Suzanne D. Conzen

11101 Background: Ovarian cancer is the leading cause of death from gynecologic malignancies. High-grade serous ovarian cancer (HGS-OvCa) is often initially sensitive to platinum-based therapy, but relapse rates remain high. The TCGA recently found that HGS-OvCas have a gene expression and mutational profile similar to that of triple negative breast cancer (TNBC). Previously, our group demonstrated that dexamethasone treatment decreased chemotherapy-induced tumor cell apoptosis in TNBC and HGS-OvCa cell lines. We have also shown that glucocorticoid receptor (GR) activation induces expression of anti-apoptotic genes SGK1 and MKP1/DUSP1 in both HGS-OvCa and TNBC cell lines and in primary human ovarian and TNBC tumors. Methods: We examined glucocorticoid receptor (GR), estrogen receptor (ER), and progesterone receptor (PR) expression in a panel of HGS-OvCa cell lines by Western analysis and qRT-PCR. We also performed apoptosis assays with and without mifepristone, glucocorticoid and/or chemotherapy treatment using IncuCyte live-cell imaging technology in order to measure the effect of GR modulation of chemotherapy sensitivity. Results: HGS-OvCa cell lines (including CAOV3, HeyA8, SKOV3, Monty-1) all had detectable GR expression; HeyA8, SKOV3, and Monty-1 cell lines expressed very low levels of ER-alpha while all other HGS-OvCa cell lines did not express any detectable ER-alpha. Furthermore, none of the HGS-OvCa cell lines tested expressed PR.Apoptosis assays revealed that GR activation significantly inhibited gemcitabine/carboplatin-induced apoptosis in HGS-OvCa cell lines and that mifepristone could reverse this cell survival effect, presumably through GR antagonism. Conclusions: These results suggest that treatment with mifepristone, a GR antagonist, reverses GR-mediated cell survival signaling in HGS-OvCa and increases chemotherapy-induced tumor cell death. To further investigate the role of GR activity in HGS-OvCa, we are currently performing xenograft experiments with chemotherapy +/- mifepristone treatment.


Sign in / Sign up

Export Citation Format

Share Document