scholarly journals The adhesion model considering capillarity for gecko attachment system

2007 ◽  
Vol 5 (20) ◽  
pp. 319-327 ◽  
Author(s):  
Tae Wan Kim ◽  
Bharat Bhushan

Geckos make use of approximately a million microscale hairs (setae) that branch off into hundreds of nanoscale spatulae to cling to different smooth and rough surfaces and detach at will. This hierarchical surface construction gives the gecko the adaptability to create a large real area of contact with surfaces. It is known that van der Waals force is the primary mechanism used to adhere to surfaces, and capillary force is a secondary effect that can further increase adhesive force. To investigate the effects of capillarity on gecko adhesion, we considered the capillary force as well as the solid-to-solid interaction. The capillary force expressed in terms of elliptical integral is calculated by numerical method to cope with surfaces with a wide range of contact angles. The adhesion forces exerted by a single gecko spatula in contact with planes with different contact angles for various relative humidities are calculated, and the contributions of capillary force to total adhesion force are evaluated. The simulation results are compared with experimental data. Finally, using the three-level hierarchical model recently developed to simulate a gecko seta contacting with random rough surface, the effect of the relative humidity and the hydrophobicity of surface on the gecko adhesion is investigated.

Author(s):  
Hartmut R. Fischer ◽  
Edwin R. M. Gelinck

The tendency of smooth surfaces to stick spontaneously to each other is becoming a serious problem, with: a) the increasing quality in surface finish for many components and systems, b) on miniaturization in mechanical components, and c) in demanded precision of positioning of parts in high-end equipment machines and systems. Surfaces tend to be made smoother in order to gain flatness or in order to fulfill the need for more precise and reproducible positioning of parts. Adhesion or even sticking of the surfaces is a major showstopper for these applications. There are several measures that can be taken in order to reduce spontaneous adhesion. Quantification of the effectiveness of the chosen solution is most often done using an AFM with probes varying from 1 nm to 8 micron of contact diameter. A serious disadvantage in measuring adhesion by sharp tips is the wear of the tips. Sharp tips wear easily, resulting in undefined contact areas. When the real area of contact is not well defined, the quantification of the adhesion force is not significant. In the current study results of AFM measurements from literature with different tip diameters of colloidal probes are compared with measurements we performed using AFM cantilevers with a plateau tip and using probes from large spheres using an alternative setup (UNAT). These methods give results that are in good agreement with values found in literature. Large contacting surface enhance the quality of the measured adhesion values. Another part of the study deals with a deliberately roughening of smooth surfaces to minimize (spontaneous) adhesion. Good agreement has been found with existing results. For the use of larger surfaces it is important that the surfaces to be tested are extremely clean. Particles on smooth surface do influence the measurements quite easily. Especially for larger areas, the possibility of encountering particles on the surface are more likely, when particles are present. For the measurements in this study a lot of care has been taken therefore to remove contamination: particles as well as contamination of organic origin.


1995 ◽  
Vol 383 ◽  
Author(s):  
M. R. Houston ◽  
R. T. Howe ◽  
K Komvopoulos ◽  
R. Maboudian

ABSTRACTThe surface properties of diamond-like carbon (DLC) films deposited by a vacuum arc technique on smooth silicon wafers are presented with specific emphasis given to stiction reduction in microelectromechanical systems (MEMS). The low deposition temperatures afforded by the vacuum arc technique should allow for easy integration of the DLC films into the current fabrication process of typical surface micromachines by means of a standard lift-off processing technique. Using X-ray photoelectron spectroscopy (XPS), contact angle analysis, and atomic force microscopy (AFM), the surface chemistry, microroughness, hydrophobicity, and adhesion forces of DLC-coated Si(100) surfaces were measured and correlated to the measured water contact angles. DLC films were found to be extremely smooth and possess a water contact angle of 87°, which roughly corresponds to a surface energy of 22 mJ/m2. It is shown that the pull-off forces measured by AFM correlate well with the predicted capillary forces. Pull-off forces are reduced on DLC surfaces by about a factor of five compared to 10 nN pull-off forces measured on the RCA-cleaned silicon surfaces. In the absence of meniscus forces, the overall adhesion force is expected to decrease by over an order of magnitude to the van der Waals attractive force present between two DLC-coated surfaces- To further improve the surface properties of DLC, films were exposed to a fluorine plasma which increased the contact angle to 99° and lowered the pull-off force by approximately 20% over that obtained with as-deposited DLC. The significance of these results is discussed with respect to stiction reduction in micromachines.


2021 ◽  
Author(s):  
Hamidreza Iranpour ◽  
Hossein Shahsavarani ◽  
Seyed Nezamedin Hosseini ◽  
Hani Hosseini Far ◽  
Sareh Zhand ◽  
...  

Abstract Bio-adhesives play a pivotal role in a wide range of medical applications. However, there are some problems about their application in varied pH values and low adhesion force under wet conditions. Here, we report new recombinant fusion protein achieved by mussel foot proteins (Mfps) of Mytilus Californianus and gas vesicle protein A (GvpA) of Anabaena flos-aquae by genetic engineering methods. These chimeric proteins self-assembled into ß-sheet rich fibres because of GvpA amyloid structure. Also, their adhesion forces were significantly increased especially in alkaline environment based on Mfp-3 and Mfp-5. This study illustrates that copolymer of Mfp-5-GvpA:GvpA-Mfp-3 can be used as an underwater sturdy adhesive with tolerance to auto-oxidation, especially at basic conditions.


Author(s):  
Donald Ruffatto ◽  
Jainam Shah ◽  
Matthew Spenko

This paper investigates the optimization of electrode geometry in electrostatic adhesives to enhance adhesion forces for use in robotic climbing and gripping applications. Electrostatic adhesion provides an attachment mechanism that is both controllable and effective over a wide range of surfaces including conductive, semi-conductive, and insulating materials. The adhesives function by utilizing a set of high voltage electrodes that generate an electric field. This electric field polarizes the substrate material, thus generating an adhesion force. Optimizing the geometry of these conductive electrodes provides enhanced adhesion forces that increase attachment robustness. To accomplish this, FEA software was used to evaluate the generated electric field for a given electrode configuration. A range of electrode widths and gap sizes were evaluated to find the optimal configuration. These findings were compared with experimental results for different pad geometries over a range of surface types. Experimental results indicate that on smooth surfaces the simulation results are representative of the actual recorded adhesion forces. Rough surfaces provide similar trends but with varying optimal configurations, likely due to the level of electric field dispersion.


Author(s):  
Jaap Kokorian ◽  
W. Merlijn van Spengen

AbstractIn this paper we measure the evolution of adhesion between two polycrystalline silicon sidewalls of a microelectromechanical adhesion sensor during three million contact cycles. We execute a series of AFM-like contact force measurements with comparable force resolution, but using real MEMS multi-asperity sidewall contacts mimicking conditions in real devices. Adhesion forces are measured with a very high sub-nanonewton resolution using a recently developed optical displacement measurement method. Measurements are performed under well-defined, but different, low relative humidity conditions. We found three regimes in the evolution of the adhesion force. (I) Initial run-in with a large of cycle-to-cycle variability, (II) Stability with low variability, and (III) device-dependent long term drift. The results obtained demonstrate that although a short run-in measurement shows stabilization, this is no guarantee for long-term stable behavior. Devices performing similarly in region II, can drift very differently afterwards. The adhesion force drift during millions of cycles is comparable in magnitude to the adhesion force drift during initial run-in. The boundaries of the drifting adhesion forces are reasonably well described by an empirical model based on random walk statistics. This is useful knowledge when designing polycrystalline silicon MEMS with contacting surfaces.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pei Yu ◽  
Chuanyong Wang ◽  
Jinglin Zhou ◽  
Li Jiang ◽  
Jing Xue ◽  
...  

Zirconia is becoming a prevalent material in dentistry. However, any foreign bodies inserted may provide new niches for the bacteria in oral cavity. The object of this study was to explore the effect of surface properties including surface roughness and hydrophobicity on the adhesion and biofilm formation ofStreptococcus mutans(S. mutans) to zirconia. Atomic force microscopy was employed to determine the zirconia surface morphology and the adhesion forces between theS. mutansand zirconia. The results showed that the surface roughness was nanoscale and significantly different among tested groups (P<0.05): Coarse (23.94±2.52 nm) > Medium (17.00±3.81 nm) > Fine (11.89±1.68 nm). The contact angles of the Coarse group were the highest, followed by the Medium and the Fine groups. Increasing the surface roughness and hydrophobicity resulted in an increase of adhesion forces and early attachment (2 h and 4 h) ofS. mutanson the zirconia but no influence on the further development of biofilm (6 h~24 h). Our findings suggest that the surface roughness in nanoscale and hydrophobicity of zirconia had influence on theS. mutansinitial adhesion force and early attachment instead of whole stages of biofilm formation.


Friction ◽  
2020 ◽  
Author(s):  
Longyang Li ◽  
Jingfang Zhu ◽  
Zhixiang Zeng ◽  
Eryong Liu ◽  
Qunji Xue

Abstract The motion of droplets on a super-hydrophobic surface, whether by sliding or rolling, is a hot research topic. It affects the performance of super-hydrophobic materials in many industrial applications. In this study, a super-hydrophobic surface with a varied roughness is prepared by chemical-etching. The adhesive force of the advancing and receding contact angles for a droplet on a super-hydrophobic surface is characterized. The adhesive force increases with a decreased contact angle, and the minimum value is 0.0169 mN when the contact angle is 151.47°. At the same time, the motion of a droplet on the super-hydrophobic surface is investigated by using a high-speed camera and fluid software. The results show that the droplet rolls instead of sliding and the angular acceleration increases with an increased contact angle. The maximum value of the angular acceleration is 1,203.19 rad/s2 and this occurs when the contact angle is 151.47°. The relationship between the etching time, roughness, angular acceleration, and the adhesion force of the forward and backward contact angle are discussed.


2020 ◽  
Vol 146 ◽  
pp. 03004
Author(s):  
Douglas Ruth

The most influential parameter on the behavior of two-component flow in porous media is “wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-component systems. Using simple thought experiments and published experimental results, many of them decades old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a two-dimensional image to determine the contact angle can result in a wide range of measured values. This observation is consistent with some published experimental results. It follows that contact angles measured in two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize the wettability of the system.


2004 ◽  
Vol 165 (4) ◽  
pp. 529-537 ◽  
Author(s):  
Iwona Bucior ◽  
Simon Scheuring ◽  
Andreas Engel ◽  
Max M. Burger

The adhesion force and specificity in the first experimental evidence for cell–cell recognition in the animal kingdom were assigned to marine sponge cell surface proteoglycans. However, the question whether the specificity resided in a protein or carbohydrate moiety could not yet be resolved. Here, the strength and species specificity of cell–cell recognition could be assigned to a direct carbohydrate–carbohydrate interaction. Atomic force microscopy measurements revealed equally strong adhesion forces between glycan molecules (190–310 piconewtons) as between proteins in antibody–antigen interactions (244 piconewtons). Quantitative measurements of adhesion forces between glycans from identical species versus glycans from different species confirmed the species specificity of the interaction. Glycan-coated beads aggregated according to their species of origin, i.e., the same way as live sponge cells did. Live cells also demonstrated species selective binding to glycans coated on surfaces. These findings confirm for the first time the existence of relatively strong and species-specific recognition between surface glycans, a process that may have significant implications in cellular recognition.


2021 ◽  
Vol 7 ◽  
Author(s):  
Bastian Poerschke ◽  
Stanislav N. Gorb ◽  
Clemens F. Schaber

Dynamic adhesion is a key ability for animals to climb smooth surfaces. Spiders evolved, convergent to geckos, a dry adhesive system made of setae branching into smaller microtrichia ending as spatulae. Several previous studies concentrated either on the whole adhesive claw tuft on the spider´s foot that consists of attachment setae or on the single adhesive contact elements, the microtrichia with spatula-shaped tips. Here, the adhesion of single setae of the spider Cupiennius salei was examined and the morphology of the pretarsus and the fine structure of the setae were studied in further detail. Using individual setae fixed to force sensing cantilevers, their adhesion at different contact angles with a glass substrate was measured as well as their adhesive performance on substrates with different roughness and on smooth surfaces with different surface energies. The results show an individual variability of the adhesive forces corresponding to the seta morphology and especially to the seta tip shape. The tip shapes of the setae vary largely even in neighboring setae of the pretarsal claw tuft that comprises approximately 2,400 setae. Regarding surface energy of the substrate, the adhesion force on hydrophobic polytetrafluoroethylene was 30% of that on a hydrophilic glass substrate, which points to the importance of both van der Waals interactions and hydrogen bonds in spider adhesion.


Sign in / Sign up

Export Citation Format

Share Document