scholarly journals Epicardial prestrained confinement and residual stresses: a newly observed heart ventricle confinement interface

2019 ◽  
Vol 16 (152) ◽  
pp. 20190028 ◽  
Author(s):  
Xiaodan Shi ◽  
Yue Liu ◽  
Katherine M. Copeland ◽  
Sara R. McMahan ◽  
Song Zhang ◽  
...  

The heart epicardial layer, with elastin as the dominant component, has not been well investigated, specifically on how it contributes to ventricular biomechanics. In this study, we revealed and quantitatively assessed the overall status of prestraining and residual stresses exerted by the epicardial layer on the heart left ventricle (LV). During porcine heart wall dissection, we discovered that bi-layered LV surface strips, consisting of an epicardial layer and cardiac muscle, always curled towards the epicardial side due to epicardial residual stresses. We hence developed a curling angle characterization technique to intuitively and qualitatively reveal the location-dependency and direction-dependency of epicardial residual stresses. Moreover, by combining prestrain measurement and biaxial mechanical testing, we were able to quantify the epicardial prestrains and residual stresses on the unpressurized intact LV. To investigate the potential mechanical effect of epicardial prestraining, a finite-element (FE) model has been constructed, and we demonstrate that it is the prestraining of the epicardial layer, not the epicardial layer alone, providing an additional resistance mechanism during LV diastolic expansion and ventricular wall protection by reducing myocardial stress. In short, our study on healthy, native porcine hearts has revealed an important phenomenon—the epicardial layer, rich in elastin, acts like a prestrained ‘balloon’ that wraps around the heart and functions as an extra confinement and protection interface. The obtained knowledge fills a gap in ventricular biomechanics and will help design novel biomimicking materials or prosthetic devices to target the maintenance/recreation of this ventricle confinement interface.

2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


2017 ◽  
Vol 754 ◽  
pp. 268-271 ◽  
Author(s):  
Raffaele Sepe ◽  
M. Laiso ◽  
A. de Luca ◽  
Francesco Caputo

The study proposed within this paper deals with an application of finite element techniques to the thermo-structural analysis of a dissimilar butt-welded joint. Residual stresses induced by the fusion arc-welding of steel joints in power generation plants are a concern to the industry. Nowadays, the application of finite element method appears to be a very efficient method for the prediction and the investigation of the weld-induced residual stresses, nevertheless the detailed modelling of all phenomena involved in such process is still challenging. The structural integrity assessment of welded structures strongly requires a deep investigation of weld-induced residual stresses in order to be compliant with safety requirement of power plant. The longitudinal and transversal residual stresses in dissimilar material butt joints of 8 mm thick for V-groove shape were studied. The developed thermo-mechanical FE model as well as the simulation procedures are detailed and results are discussed. As a result of such work, it has been found out that residual stresses in the two dissimilar plates are characterized by very different magnitudes and distribution.


Author(s):  
Atsutaka Tamura ◽  
Koki Matsumoto

Abstract The mechanical and structural characteristics of aortic media have profound effects on the physiology and pathophysiology of an aorta. However, many aspects of the aortic tissue remain poorly understood, partly due to the intrinsic layered wall structure and regionally varying residual stresses. Our recent works have demonstrated that a mechanical interaction between the elastic lamina (EL) and smooth muscle layer in the aortic media can be computationally reproduced using a simplified finite element (FE) model. However, it is questionable whether the simplified FE model we created was representative of the structure of a real medial wall and its modeling technique would be applicable to develop a more sophisticated and structure-based aortic FE model. This study aimed to computationally represent EL buckling in the aortic medial ring at an unloaded state and successfully reproduced transmural variation in EL waviness across the aortic wall. We also aimed at confirming the inner and outer layers of the medial wall are subjected to compressive and tensile residual stresses, respectively, at the unloaded state, implying that the ring model will open spontaneously when it is radially cut. Moreover, the computed residual stresses were found to be within the reasonable range of the predicted values, 1–10 kPa, supporting the validity of our modeling approach. Although further study is required, the information obtained here will greatly help improve the understanding of basic aortic physiology and pathophysiology, while simultaneously providing a basis for more sophisticated computational modeling of the aorta.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1303
Author(s):  
Fabian Mühl ◽  
Moritz Klug ◽  
Stefan Dietrich ◽  
Volker Schulze

Internal Quenching is an innovative heat treatment method for difficult to access component sections. Especially, the microstructure, as well as the residual stress state at inner surfaces, of thick-walled tubes can be adjusted with the presented flexible heat treatment process. Based on multiphysical FE-models of two different steels, a simulative optimization study, considering different internal quenching strategies, was performed in order to find the optimal cooling conditions. The focus hereby was on the adjustment of a martensitic inner surface with high compressive residual stresses. The simulatively determined optimal cooling strategies were carried out experimentally and analyzed. A good agreement of the resulting hardness and residual stresses was achieved, validating the presented Fe-model of the Internal Quenching process. The shown results also indicate that the arising inner surface state is very sensitive to the transformation behavior of the used steel. Furthermore, the presented study shows that a preliminary simulative consideration of the heat treatment process helps to evaluate significant effects, reducing the experimental effort and time.


Author(s):  
Liwu Wei ◽  
Weijing He ◽  
Simon Smith

The level of welding residual stress is an important consideration in the ECA of a structure or component such as a pipeline girth weld. Such a consideration is further complicated by their variation under load and the complexity involved in the proper assessment of fracture mechanics parameters in a welding residual stress field. In this work, 2D axi-symmetric FEA models for simulation of welding residual stresses in pipe girth welds were first developed. The modelling method was validated using experimental measurements from a 19-pass girth weld. The modeling method was used on a 3-pass pipe girth weld to predict the residual stresses and variation under various static and fatigue loadings. The predicted relaxation in welding residual stress is compared to the solutions recommended in the defect assessment procedure BS 7910. Fully circumferential internal cracks of different sizes were introduced into the FE model of the three-pass girth weld. Two methods were used to introduce a crack. In one method the crack was introduced instantaneously and the other method introduced the crack progressively. Physically, the instantaneously introduced crack represents a crack originated from manufacturing or fabrication processes, while the progressively growing crack simulates a fatigue crack induced during service. The J-integral values for the various cracks in the welding residual stress field were assessed and compared. This analysis was conducted for a welding residual stress field as a result of a welding simulation rather than for a residual stress field due to a prescribed temperature distribution as considered by the majority of previous investigations. The validation with the 19-pass welded pipe demonstrated that the welding residual stress in a pipe girth weld can be predicted reasonably well. The relaxation and redistribution of welding residual stresses in the three-pass weld were found to be significantly affected by the magnitude of applied loads and the strain hardening models. The number of cycles in fatigue loading was shown to have little effect on relaxation of residual stresses, but the range and maximum load together governed the relaxation effect. A significant reduction in residual stresses was induced after first cycle but subsequent cycles had no marked effect. The method of introducing a crack in a FE model, progressively or instantaneously, has a significant effect on J-integral, with a lower value of J obtained for a progressively growing crack. The path-dependence of the J-integral in a welding residual stress field is discussed.


Author(s):  
J.-S. Park ◽  
J.-M. Kim ◽  
G.-H. Sohn ◽  
Y.-H. Kim

This study is concerned with the mechanics analysis of residual stress improvement by the heat sink method applied to a dissimilar metal weld (DMW) for the use in nuclear power plants. The DMW joint considered here is composed of ferritic low-alloy steel nozzle, austenitic stainless steel safe-end, and nickel-base alloy A52 weld metal. To prepare the DMW joint with a narrow-gap, the gas tungsten arc welding (GTAW) process is utilized, and the heat sink method is employed to control thermal gradients developed in the critical region of work pieces during welding. Weld residual stresses are computed by the non-linear thermal elasto-plastic analysis using the axisymmetric finite element (FE) model, for which temperature-dependent thermal and mechanical properties of the materials are considered. A full-scale mock-up test is conducted to validate analytical solution for the DMW joint, and residual stresses are measured by using the hole-drilling method. Results of the FE modeling and mock-up test for the DMW joint are compared and effects of the heat sink method are discussed. It is found that a significant amount of residual compressive stresses can be developed on the inner surface of the DMW joint by using the heat sink method, which can effectively reduce the susceptibility of the welded materials to stress corrosion or fatigue cracking.


Author(s):  
Ali Gadelmoula ◽  
Khaled Al-Athel

Abstract Ceramic coatings are widely used in many engineering applications, especially applications related to components operating at elevated temperatures. One of the main issues relates to ceramic coatings is the development of residual stresses due to quenching and the thermal mismatch between the deposited coating layers and the substrate. In this work, a computational framework is developed to investigate the effect of various process parameters on the development of the residual stresses. The geometry of the coating layers and the interface roughness between the layers is first generated using SimCoat, a Monte Carlo based statistical algorithm that determines the effect of process parameters (droplet size, spraying speed, etc.) on the characteristics of the developed coating (coating thickness, porosity, etc.). An in-house code is used to convert the statistical data into a finite element (FE) model. Various FE models are generated with different process parameters, and the development of residual stresses is compared between them. The developed framework can be used by material scientists and engineers to predict the quality of the coating and optimize the process parameters to any specific application.


1998 ◽  
Vol 33 (4) ◽  
pp. 263-274 ◽  
Author(s):  
D J Smith ◽  
C G C Poussard ◽  
M J Pavier

Measurements of residual stresses in 6 mm thick aluminium alloy 2024 plates containing 4 per cent cold worked fastener are made using the Sachs method. The measurements are made on discs extracted from the plates. The measured tangential residual stress distribution adjacent to the hole edge are found to be affected by the disc diameter. The measured residual stresses are also in good agreement with averaged through-thickness predictions of residual stresses from an axisymmetric finite element (FE) model of the cold working process. A finite element analysis is also conducted to simulate disc extraction and then the Sachs method. The measured FE residual stresses from the Sachs simulation are found to be in good agreement with the averaged through-thickness predicted residual stresses. The Sachs simulation was not able to reproduce the detailed near-surface residual stresses found from the finite element model of the cold working process.


Author(s):  
Mingya Chen ◽  
Weiwei Yu ◽  
Fei Xue ◽  
Francis Ku ◽  
Zhilin Chen ◽  
...  

The objective of this study is to correct installation non-conformance of a surge line using the excavation and re-weld method which is widely used in nuclear power plants. The surge line with a backslope was not at the required design level after initial installation. In order to solve the problem, a repairing technology is shown as follows: the weld was successively excavated and welded again while the surge line slope was corrected with the help of jacks. Because many of the degradation mechanisms relevant to power plant components can be accelerated by the presence of welding residual stresses (WRS), the WRS caused by the repairing process need to be studied. In this paper, the WRS simulation technique employed in this project is sophisticated. It utilizes a 3-D finite element (FE) model, and simulates the weld sequencing and excavation. Moreover, the WRS simulation performed in this project not only uses the un-axisymmetric model, but also considers the deformation caused by the external jacking loads. The results show that the repairing process is effective, and strain damage induced by the welding repair is also acceptable.


Author(s):  
P. Kapadia ◽  
H. Zhou ◽  
C. M. Davies ◽  
R. C. Wimpory ◽  
K. M. Nikbin

Residual stresses are induced in components when fabrication processes produce internal stresses or local deformation and cause accelerated creep damage and cracking during service at elevated temperatures. A method of inducing residual stresses in laboratory fracture specimens is proposed where an oversized wedge is inserted into the crack mouth of a compact tension, C(T), type specimen. In this way the extent of internal stresses can be controlled in order to minimise the level of crack tip plasticity which inherently reduces the remaining strain to failure. Numerical simulations of wedge insertion into specimens made of 316H austenitic stainless steel have been developed to calibrate the wedge insertion process. These models have been experimentally validated using surface strains measured during the wedge insertion, using Digital Image Correlation (DIC), and Neutron Diffraction (ND) measurements. The validated Finite Element (FE) model is used to determine the wedge insertion depth required to maximise the residual stresses without causing significant crack tip plasticity. The validated numerical simulation is used to determine the wedge insertion depths of further wedge-loaded C(T) specimens made from uniformly pre-compressed 316H stainless steel. The reduced creep ductility of this material increases the rate of crack growth under creep conditions. This method of inducing residual stresses with limited crack tip plasticity allows creep crack growth under simulated secondary loading conditions to be investigated without the influence of non-uniform creep ductility caused by work hardening.


Sign in / Sign up

Export Citation Format

Share Document