scholarly journals Distribution, composition and functions of gelatinous tissues in deep-sea fishes

2017 ◽  
Vol 4 (12) ◽  
pp. 171063 ◽  
Author(s):  
Mackenzie E. Gerringer ◽  
Jeffrey C. Drazen ◽  
Thomas D. Linley ◽  
Adam P. Summers ◽  
Alan J. Jamieson ◽  
...  

Many deep-sea fishes have a gelatinous layer, or subdermal extracellular matrix, below the skin or around the spine. We document the distribution of gelatinous tissues across fish families (approx. 200 species in ten orders), then review and investigate their composition and function. Gelatinous tissues from nine species were analysed for water content (96.53 ± 1.78% s.d.), ionic composition, osmolality, protein (0.39 ± 0.23%), lipid (0.69 ± 0.56%) and carbohydrate (0.61 ± 0.28%). Results suggest that gelatinous tissues are mostly extracellular fluid, which may allow animals to grow inexpensively. Further, almost all gelatinous tissues floated in cold seawater, thus their lower density than seawater may contribute to buoyancy in some species. We also propose a new hypothesis: gelatinous tissues, which are inexpensive to grow, may sometimes be a method to increase swimming efficiency by fairing the transition from trunk to tail. Such a layer is particularly prominent in hadal snailfishes (Liparidae); therefore, a robotic snailfish model was designed and constructed to analyse the influence of gelatinous tissues on locomotory performance. The model swam faster with a watery layer, representing gelatinous tissue, around the tail than without. Results suggest that the tissues may, in addition to providing buoyancy and low-cost growth, aid deep-sea fish locomotion.

2016 ◽  
Vol 51 (4) ◽  
pp. 271-278 ◽  
Author(s):  
MA Huq ◽  
SK Akter ◽  
Yeon Ju Kim ◽  
Mohamed El Agamy Farh ◽  
Deok Chun Yang

The study was conducted to develop an edible and low cost growth medium for cultivation of Weissella hellenica DC06, a lactic acid bacteria (LAB) and to study whether, the medium is suitable for bioconversion of major ginsenoside Rb1 into ginsenoside Rg3 through fermentation by W. hellenica DC06. Fourteen different media compositions were investigated to cultivate W. hellenica DC06. Among these, W. hellenica DC06 exhibited the highest growth in media containing 20 g/l radish, 20 g/l glucose, and 10 g/l yeast extract (Medium 3). The optical density of W. hellenica DC06 cultivated in medium 3 reached 1.8 (1.066 x 1010 CFU/ml) after 24 h of incubation. Importantly, the optimized medium was approximately four times cheaper compared to MRS medium. In addition to being economical, the new medium was also edible. Also W. hellenica DC06 showed strong fermentation ability in newly developed medium regarding on major ginsenoside Rb1 biotransformation. Ginsenoside Rb1 was converted into pharmacologically active ginsenoside Rg3 in new medium. In contrast,W. hellenica DC06 showed weak fermentation ability in MRS medium where ginsenoside Rb1 was converted intoginsenoside Rd. The transformation products were analyzed by TLC, and HPLC. Within seven days of fermentation, almost all ginsenoside Rb1 was decomposed and converted into Rg3 in optimized medium. W. hellenica DC06 hydrolyzed two glucose moieties attached to the C-20 position of the ginsenoside Rb1aglyconeand synthesized Rg3 in newly developed medium.Bangladesh J. Sci. Ind. Res. 51(4), 271-278, 2016


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 350
Author(s):  
Julianty Frost ◽  
Mark Frost ◽  
Michael Batie ◽  
Hao Jiang ◽  
Sonia Rocha

Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.


2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


2021 ◽  
Author(s):  
Ken Takashima ◽  
Daiki Miyahara ◽  
Takaaki Mizuki ◽  
Hideaki Sone

AbstractIn 1989, den Boer presented the first card-based protocol, called the “five-card trick,” that securely computes the AND function using a deck of physical cards via a series of actions such as shuffling and turning over cards. This protocol enables a couple to confirm their mutual love without revealing their individual feelings. During such a secure computation protocol, it is important to keep any information about the inputs secret. Almost all existing card-based protocols are secure under the assumption that all players participating in a protocol are semi-honest or covert, i.e., they do not deviate from the protocol if there is a chance that they will be caught when cheating. In this paper, we consider a more malicious attack in which a player as an active adversary can reveal cards illegally without any hesitation. Against such an actively revealing card attack, we define the t-secureness, meaning that no information about the inputs leaks even if at most t cards are revealed illegally. We then actually design t-secure AND protocols. Thus, our contribution is the construction of the first formal framework to handle actively revealing card attacks as well as their countermeasures.


Archaea ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Franziska Wemheuer ◽  
Avril Jean Elisabeth von Hoyningen-Huene ◽  
Marion Pohlner ◽  
Julius Degenhardt ◽  
Bert Engelen ◽  
...  

Information on environmental conditions shaping archaeal communities thriving at the seafloor of the central Pacific Ocean is limited. The present study was conducted to investigate the diversity, composition, and function of both entire and potentially active archaeal communities within Pacific deep-sea sediments. For this purpose, sediment samples were taken along the 180° meridian of the central Pacific Ocean. Community composition and diversity were assessed by Illumina tag sequencing targeting archaeal 16S rRNA genes and transcripts. Archaeal communities were dominated by CandidatusNitrosopumilus(Thaumarchaeota) and other members of theNitrosopumilaceae(Thaumarchaeota), but higher relative abundances of the Marine Group II (Euryarchaeota) were observed in the active compared to the entire archaeal community. The composition of the entire and the active archaeal communities was strongly linked to primary production (chlorophyll content), explaining more than 40% of the variance. Furthermore, we found a strong correlation of the entire archaeal community composition to latitude and silicic acid content, while the active community was significantly correlated with primary production and ferric oxide content. We predicted functional profiles from 16S rRNA data to assess archaeal community functions. Latitude was significantly correlated with functional profiles of the entire community, whereas those of the active community were significantly correlated with nitrate and chlorophyll content. The results of the present study provide first insights into benthic archaeal communities in the Pacific Ocean and environmental conditions shaping their diversity, distribution, and function. Additionally, they might serve as a template for further studies investigating archaea colonizing deep-sea sediments.


Author(s):  
Matthew L. Cavuto ◽  
Matthew Chun ◽  
Nora Kelsall ◽  
Karl Baranov ◽  
Keriann Durgin ◽  
...  

Transfemoral (above-knee) amputees face a unique and challenging set of restrictions to movement and function. Most notably, they are unable to medially rotate their lower-leg and subsequently cross their legs. The best and most common solution to this issue today is a transfemoral rotator, which allows medial rotation of the leg distal to the knee through a lockable turntable mechanism. However, currently available transfemoral rotators can cost thousands of dollars, and few equivalent technologies exist in the developing world. This paper, supported by the results of field studies and user testing, establishes a framework for the design of a low-cost and easily manufacturable transfemoral rotator for use in the developing world. Two prototypes are presented, each with a unique internal locking mechanism and form. A preliminary field study was conducted on six transfemoral amputees in India and qualitative user and prosthetist feedback was collected. Both prototypes successfully allowed all subjects to complete tasks such as crossing legs, putting on pants, and tying shoes while maintaining functionality of walking and standing. Future iterations of the mechanism will be guided by a combination of the most positively received features of the prototypes and general feedback suggestions from the users.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Limin Wang ◽  
Dongfeng Huang

AbstractBecause ammonia-oxidizing archaea (AOA) are ubiquitous and highly abundant in almost all terrestrial soils, they play an important role in soil nitrification. However, the changes in the structure and function of AOA communities and their edaphic drivers in paddy soils under different fertilization and irrigation regimes remain unclear. In this study, we investigated AOA abundance, diversity and activity in acid paddy soils by a field experiment. Results indicated that the highest potential ammonia oxidation (PAO) (0.011 μg NO 2 -  –N g-1 d.w.day-1) was found in T2 (optimal irrigation and fertilization)—treated soils, whereas the lowest PAO (0.004 μg NO 2 -  –N g-1 d.w.day-1) in T0 (traditional irrigation)- treated soils. Compared with the T0—treated soil, the T2 treatment significantly (P < 0.05) increased AOA abundances. Furthermore, the abundance of AOA was significantly (P < 0.01) positively correlated with pH, soil organic carbon (SOC), and PAO. Meanwhile, pH and SOC content were significantly (P < 0.05) higher in the T2—treated soil than those in the T1 (traditional irrigation and fertilization)- treated soil. In addition, these two edaphic factors further influenced the AOA community composition. The AOA phylum Crenarchaeota was mainly found in the T2—treated soils. Phylogenetic analysis revealed that most of the identified OTUs of AOA were mainly affiliated with Crenarchaeota. Furthermore, the T2 treatment had higher rice yield than the T0 and T1 treatments. Together, our findings confirm that T2 might ameliorate soil chemical properties, regulate the AOA community structure, increase the AOA abundance, enhance PAO and consequently maintain rice yields in the present study.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii199-ii200
Author(s):  
Luciano Galdieri ◽  
Arijita Jash ◽  
Olga Malkova ◽  
Diane Mao ◽  
Jian Campian ◽  
...  

Abstract Glioblastoma (GBM) kills almost all patients within 2 years. A subpopulation of cells, GBM stem cells (GSCs), contributes to treatment resistance and recurrence. A major therapeutic goal is to kill GSCs, but no targeted therapy yet exists. Since their discovery, GSCs have been isolated using single surface markers, such as CD15, CD44, CD133, and a-6 integrin. It remains unknown how these single surface marker-defined GSC populations compare to each other in terms of signal transduction and function and whether expression of different combinations of these markers is associated with distinct phenotypes. Using mass cytometry and fresh operating room specimens, we found that 15 distinct GSC subpopulations exist in vivo and they differ in their MEK/ERK, WNT, and AKT pathway activation status. In culture, some subpopulations were lost and previously undetectable ones materialized. GSCs highly expressing all four surface markers had the greatest self-renewal capacity and in vivo tumorigenicity as well as the strongest WNT pathway activation. This work highlights the signaling and phenotypic diversity in GSC subpopulations, together suggesting that not all GSCs are equivalent. These observations should be considered when studying GSCs in the laboratory, with implications for the development of treatments that target GSCs and prevent tumor recurrence in patients.


2021 ◽  
Vol 8 (31) ◽  
pp. 2865-2869
Author(s):  
Praveen Mulki Shenoy ◽  
Amith Ramos ◽  
Narasimha Pai ◽  
Bharath Shetty ◽  
Aravind Pallipady Rao

BACKGROUND The papillary muscle basal connections have significant clinical implications. Variety of studies done on its morphology and function by various specialists in different departments. A close look on these revealed the interconnections of papillary muscles to one another and to the interventricular septum of both ventricles is related to uncoordinated contractions of papillary muscles, leading to hyper or hypokinesia or prolapse or even its rupture. METHODS Our study done in 25 formalin soaked hearts revealed after the deep and meticulous dissection, reflecting the walls of ventricles laterally the numerous interconnections of papillary muscles at its bases and IVS. Ventricles are opened by inverted ‘L’ shaped incision and its reflected more laterally till all the papillary muscles is visible in one frame after incising the moderator band. The connections were noted, measured, photographed, tabulated, compared with similar studies and analysed with experts with respective fields. RESULTS Almost all the specimens did have the interconnections. Further the post mortem findings of the cardiac related deaths with involvement of papillary muscles suggest damage to such ‘bridges’. The moderator band extensions to the base of right APM, and its extension to the posterior groups is noted in all the specimens. The bridge from the IVS to bases of both the groups of papillary muscles is noted in left ventricle. In90% of specimens the one PPM is found to be loosely connected, more so in left ventricle. CONCLUSIONS We are of a conclusion that such basal interconnections and to the interventricular septum are responsible for rhythmic contractions of papillary muscles of both ventricles. Since the AV valves have to open simultaneously, interconnections becomes mandatory as the impulse has to reach it before it reaches the trabeculae carniae. One of the Posterior papillary muscles is loosely connected to other papillary muscles, may be the reason for its rupture, more so in left ventricle. KEYWORDS Papillary Muscle, Interbasal Connection, Moderator Band, Valvular Prolapse, AV Valves


2008 ◽  
Vol 5 (2) ◽  
pp. 559-562 ◽  
Author(s):  
Matthew Branch ◽  
Mike Robinson ◽  
Glyn Jones ◽  
Nigel Mason ◽  
Jim Dixon

Sign in / Sign up

Export Citation Format

Share Document