scholarly journals Electiveness of agro-pulping process in the sustainable production of black liquor-based activated carbons

2019 ◽  
Vol 6 (5) ◽  
pp. 190173
Author(s):  
Vivian F. Lotfy ◽  
Altaf H. Basta

During the production of paper pulp, the waste water loaded with organic materials from pulping process is discharged. Therefore, water treatment should be performed before disposing of such effluent. The use of such effluent for production of activated carbon will be effective in omitting the wastewater treatment and in obtaining the product required in many industries. In this respect, this paper deals with evaluating the performance of activated carbons (ACs) produced from black liquors (BLs) as by-products from three pulping processes of rice straw (RS) and sugar-cane bagasse (SCB), namely: alkaline, sulfite and neutral sulfite, which are coded SP, SSP and NSP, respectively. Elemental analysis and thermal analysis (TGA and DTGA) are carried out on the BLs, while the surface area ( S BET ), micro-/mesoporous distribution, adsorption capacity of methylene blue (MB) and iodine (I 2 -value), as well as Fourier transform infrared spectra (FT-IR) and scanning electron micrograph (SEM) are studied on synthesizing ACs. The optimal pulping approach for achieving BL-based AC, with the following characteristics: specific surface area ( S BET ) ∼ 921 and 545 m 2 g −1 , MB adsorption capacity 238 and 370 mg g −1 , and I 2 -value 928 and 1255 mg g −1 of BL-based ACs, are from neutral sulfite pulping of SCB (B-NSP) and RS (RS-NSP), respectively. These finding data are ascribed to the carbon content of BL, as well as greatest total volume ( V T 0.786 and 0.701 cm 3 g −1 ) together with decreasing the volume of micropores/total (38 and 48%) of BL-NSP-ACs. It is interesting to note that the AC provided from RS-NSP has greater adsorption capacity for I 2 and MB than the AC produced from RS-pulp fibres.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


Author(s):  
Sergio Acevedo ◽  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

Abstract Activated carbons are obtained by chemical activation of African Palm shells (Elaeis guineensis) with different impregnating agents, i. e. magnesium chloride (MgCl2) and calcium chloride (CaCl2) aqueous solutions at different concentrations (3, 5 and 7 % w/v) and temperatures (between 773 and 1073 K), in order to assess their influence on the development of the porosity. The activated carbons prepared are characterized in terms of both textural and chemical properties. The activated carbons have a surface area and a pore volume ranging between 19 and 501 m2.g−1 and 0.03–0.29 cm3.g−1, respectively. Based on the obtained results, the samples with higher surface area and pore volume (i. e. those impregnated with MgCl2 and CaCl2 solutions and thermally treated at 1073 K) are selected to evaluate the adsorption capacity and affinity for CO2. CO2 adsorption capacity varies between 1.78 and 2.95 mmolCO2.g−1 at 273 K and low pressure, and the activated carbon impregnated with the solution of MgCl2 3% and activated at 1073 K (i. e. ACMg3-1073) showed the best performances. Finally, the kinetic results show that adsorption rate for sample ACMg3-1073 is enhanced by its micro-mesoporous nature, being the access routes to the micropores larger.


Author(s):  
Long Wu ◽  
Yimeng Cai ◽  
Jiayong Tu ◽  
Shizhe Wang ◽  
Noriyuki Kobayashi ◽  
...  

AbstractActivated carbon (AC) was modified by using non-thermal plasma in O2, N2 and O2/N2 atmospheres to increase its Cu(II) adsorption capacity and quantify the influences of the modifying atmospheres. SEM, BET, FT-IR and XPS were used to characterize the surface physical and chemical properties of AC. The results show that the AC modified by using plasma had significantly better Cu(II) adsorption performance than the raw AC. Among the O2, N2 and O2/N2 atmospheres, the AC with plasma modification in N2 showed best Cu(II) adsorption performance and the Cu(II) adsorption capacity was 369.5% higher than the raw AC. The AC modified in O2 atmosphere can form C—COOH groups, while the AC modified in N2 atmosphere can form C—NH2 groups. These two groups are both beneficial for Cu(II) adsorption, where the —NH2 groups are more effective for Cu(II) adsorption compared to —COOH groups. The chemisorption dominated the Cu(II) adsorption on the plasma modified AC and the adsorption performance was dependent on the surface functional groups properties of AC.


2015 ◽  
Vol 15 (3) ◽  
pp. 649-655 ◽  
Author(s):  
Husam Faiz Haddad ◽  
Azhagapillai Prabhu ◽  
Ahmed Al Shoaibi ◽  
Chandrasekar Srinivasakannan

The adsorption of benzene, toluene and xylene (BTX) was investigated covering different types of commercially available activated carbons with varied surface area and surface functional groups. The physico-chemical properties were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared (FTIR) spectroscopy and the Boehm titration method. Experiments to assess the adsorption isotherms and kinetics of adsorption were performed and the results are presented. An increase in the surface acid functional groups was found to decrease the adsorption capacity, with the highest adsorption capacity corresponding to carbon with lowest acid functionality.


Author(s):  
Tariq Altalhi ◽  
A. Abd El-moemen ◽  
Mohamed M. Ibrahim ◽  
Amine Mezni ◽  
Ibrahim Hotan Alsohaimi ◽  
...  

Abstract Olive oil production processes breed two kinds of environmentally detriment waste by-products; the solid olive residue (SOR) and olive waste water (OWW) by-products. The current work aims to treat simultaneously both wastes in the same location. The solid olive residue was converted to activated carbon with pyrolysis at 600°C, followed by steam activation at 600, 700 and 800°C. The produced activated carbons were investigated by FTIR, SEM, BET surface areas analyzer and iodine number. The surface area increases with increasing stream activation temperature up to 800°C (1020 m2/g BET). However, steam activation at 700°C is most environmental and economically feasible, because increasing the activation temperature from 700 to 800°C increases the surface area only from 979 to 1020 m2/g. Activated carbon steam cured at 700°C shows high removal capacity of both polyphenolic compounds and COD of OWW. 95.5% of COD and 84.2% of polyphenolic compounds was removed after equilibrium with activated carbon for 2 hours at room temperature.


2018 ◽  
Vol 18 (44) ◽  
pp. 24-35
Author(s):  
Narandalai B ◽  
W G Shim ◽  
M S Balathanigaimani ◽  
H Moon

Carbon monoliths for adsorbed natural gas (ANG) storage were prepared from Mongolian anthracite-based activated carbons using carboxy-methyl cellulose as a binder under different compressing pressures. Nitrogen adsorption/desorption experiments were carried out to obtain the specific surface area, pore volume, and pore size distribution of the monoliths.  Methane adsorption experiments on the carbon monoliths were conducted at different temperatures and pressures up to around 3.5 MPa in a high pressure volumetric adsorption apparatus. As expected, adsorption results indicated that the methane adsorption capacity of the carbon monoliths increased with increasing specific surface area and packing density.  The maximum volumetric adsorption of methane was observed as 163 V/V at 293 K and 3.5 MPa on a carbon monolith sample, PMAC1/2-3-65, that does not have the highest specific surface area but relatively high packing density comparing with other monoliths, which implies that two physical properties contribute contradictorily to the methane adsorption capacity.  Based on experimental results, the carbon monoliths prepared from Mongolian anthracite-based activated carbons can be promising media for ANG storage application.


2020 ◽  
Vol 15 (4) ◽  
pp. 1158-1173
Author(s):  
Badreddine Belhamdi ◽  
Zoulikha Merzougui ◽  
Hamza Laksaci ◽  
Chemseddine Belabed ◽  
Salim Boudiaf ◽  
...  

Abstract Nitrogenous disinfection by-products (N-DBPs) in chlorinated drinking water are receiving increasing attention due to their elevated toxicities. An effective strategy to control N-DBP formation is to reduce their nitrogenous precursors (amino acids) before disinfection. This work was undertaken to study free amino acid l-tyrosine adsorption onto two activated carbons synthesized from date pits. The amino acid is plentiful in low-molecular weight algal organic matter, which helps the formation of nitrogenous and carbonaceous disinfection by-products during water treatment. The equilibrium adsorption of l-tyrosine was studied on well-characterized activated carbons prepared by KOH (ACK) and ZnCl2 (ACZ) activation, possessing textural properties evaluated by SEM analysis, N2 adsorption–desorption isotherms and FT-IR spectroscopy. Batch experiments were conducted to determine the activated carbons’ adsorption capacities. The effect of contact time, initial adsorbate concentration, solution pH, and temperature were studied. The Langmuir model gave the best fit for the experimental data of l-tyrosine with a maximum monolayer adsorption capacity of 178.57 and 102.04 mg·g−1 on ACK and ACZ, respectively. Thermodynamic parameters ΔG°, ΔH° and ΔS° were also estimated for the adsorption study. The adsorption was spontaneous and exothermic, and involved physisorption.


2018 ◽  
Vol 78 (7) ◽  
pp. 1489-1498 ◽  
Author(s):  
Hao Sun ◽  
Xin He ◽  
Yongtian Wang ◽  
Fred S. Cannon ◽  
Hong Wen ◽  
...  

Abstract The authors used a nitric acid (HNO3)-sodium dodecyl benzene sulfonate (SDBS) method to modify a lignite-based activated carbon. These modified carbons were appraised for their removal of Cd(II) from aqueous solutions. Response surface methodology was employed to optimize the preparation factors including nitric acid concentration CN, temperature T and SDBS concentration CS. Statistical analysis indicated that the interaction of CN and CS incurred the most effect on the maximum cadmium adsorption capacity (Qm). The optimal Qm appeared at CN = 3.29 mol/L, T = 76 °C and CS=30,700 mg/L. The optimal protocol achieved 44.21 mg/g Qm for Cd(II) which was about 7 times larger than for this pristine lignite activated carbon (LAC) (6.78 mg/g). The physical-chemical properties of the modified activated carbons following each synthesis step were characterized relative to their surface area, oxygen functionality, and external surface charge. It was confirmed that the developed surface area, functional groups and negative charges were mainly responsible for the higher adsorption capacity for the LAC that have been more favorably tailored by this HNO3-SDBS protocol.


2012 ◽  
Vol 610-613 ◽  
pp. 1701-1704
Author(s):  
Man Cheng Zhang ◽  
Wei Wang ◽  
Cong Jian Huang ◽  
Ai Min Li

The adsorption behaviors of chlortetracycline on two kinds of granular activated carbons with different BET surface area and average pore width have been studied. The results show that larger BET surface area is beneficial for the adsorption capacity, and wider pore structure can enhance the adsorption rate. Initial solution pH has great effect on the adsorption behavior, and the suitable pH for the effective adsorption is from 4 to 8.


Author(s):  
Yuliia Tamarkina ◽  
Volodymyr Kucherenko ◽  
Iryna Frolova

The purpose of work is to evaluate the 4-chlorophenol (CP) adsorption capacity of brown coal activated carbons (ACs) prepared at different temperature of KOH activation. ACs were obtained in three stages: 1) impregnation of coal with a KOH solution, 2) heating (4 deg/min) in argon to a given temperature t (400-800°C) and exposure for 1 h, 3) cooling, washing from KOH, drying. The samples are designated as AC(t). Based on the N2 adsorption-desorption isotherms, the ACs total pore volume (Vt, cm3/g) and specific surface area (S, m2/g) were determined. The ACs adsorption capacity were measured at 25°С, CP concentration ≤700 mg/L, АC dosage – 1 g/L. The alkaline activation temperature was found to be a key factor in forming porosity of ACs and ability to adsorb CP. The CP maximum capacity (ACP(m), mg/g) increases 6.6 times up to 307 mg/g for AC(800) having S=1142 m2/g. The specific adsorption capacity (ACP(S) = ACP(m)/S, mg/m2) sharply decreases in a sample range from AC(400) to AC(550) and weakly depends on temperature at 550-800°C. The kinetics of CP adsorption is best described by a pseudo-second order model. The rate determining stage is the interaction of CP molecules with AC surface. The CP adsorption isotherms are best described by the Langmuir model. The dependence of the ACP(m) from S can be approximated by three linear equations that probably correspond to the three regions of forming surface adsorbtion centers (AdCs). The first (S≤370 m2/g) is characterized by a small adsorption capacity increment (kS=0.103 mg/m2), but a significant (16.4 times) decrease in the specific capacity ACP(S). In the second region (S=370-770 m2/g, t=550-750°C), capacity increment is 10 times more (kS=0.985 mg/m2) and in the third region (S≥770 m2/g, t≥750°C) the increase in CP capacity is the smallest (kS=0.067 mg/m2). The thermoinitiated formation of AdCs is assumed to be not proportional to the increase in surface area, and their chemical structure and reactivity is determined by the alkaline activation temperature.


Sign in / Sign up

Export Citation Format

Share Document