scholarly journals A green extraction design for enhancing flavonoid compounds from Ixora javanica flowers using a deep eutectic solvent

2020 ◽  
Vol 7 (10) ◽  
pp. 201116
Author(s):  
Nina Dewi Oktaviyanti ◽  
Kartini Kartini ◽  
Mochammad Arbi Hadiyat ◽  
Ellen Rachmawati ◽  
Andre Chandra Wijaya ◽  
...  

In this study, an environmentally friendly extraction method for flavonoid compound from Ixora javanica , as a new raw material candidate for herbal medicine and cosmetics, was developed. The objectives of the present work were to provide recommendations for the optimal extraction conditions and to investigate the effects of any extraction parameters on flavonoid yields from the I. javanica flower. The extraction process was performed using deep eutectic solvent (DES) (choline chloride and propylene glycol at molar ratio of 1 : 1) and the ultrasound-assisted extraction method. Both single-factor and response surface analyses using three-level and three-factor Box Behnken designs were conducted to obtain the optimum flavonoid concentrations. The results showed that the optimum extraction conditions for total flavonoids featured an extraction time of 40 min, 25% water content in DES and a solid-to-liquid ratio of 1 : 25 g ml −1 . An extract obtained under optimum extraction conditions showed higher total flavonoid yields than an ethanolic extract which was used for comparison. Scanning electron microscope images demonstrated that both of the solvents also showed different effects on the outer surface of the I. javanica flower during the extraction process. In summary, our work succeeded in determining the optimum conditions for total flavonoids in the I. javanica flower using a green extraction method.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lijing Li ◽  
Yuejie Wang ◽  
Fangxin Liu ◽  
Yang Xu ◽  
Huiwei Bao

The SD was extracted with a new green eutectic solvent, and the extraction method of TCM decoction was developed. In the quantitative analysis by HPLC, choline chloride phenol was selected as the eutectic solvent, THF was used as the extractant, and investigation of DES type, DES molar ratio, DES-to-THF ratio, vortex time, and material-to-liquid ratio was carried out. The experimental results showed that the optimal extraction method was as follows: the molar ratio of DES was 1 : 3, and the material-liquid ratio was 5 : 1200 (mL/μL). The volume ratio of DES to THF was 1200 : 800 (μL), the vortex time was 3 min, and the extraction was repeated two times. The eutectic solvent liquid phase microextraction method was adopted to optimize the extraction method of SD and reduce the complicated processing, long time, and low efficiency of traditional methods. At the same time, in the mouse ammonia water inducing cough and phenol red excretion and expectorant experiments, SD high- and medium-dose groups have a significant inhibitory effect on the frequency of antitussive in mice and both can increase the excretion of phenol red to varying degrees, indicating that SD has good cough-relieving and expectorant effect. The present study suggests a scientific basis and basis for the clinical research and quality standard formulation of SD.


Cellulose ◽  
2020 ◽  
Vol 27 (12) ◽  
pp. 6831-6848
Author(s):  
L. A. Soto-Salcido ◽  
I. Anugwom ◽  
L. Ballinas-Casarrubias ◽  
M. Mänttäri ◽  
M. Kallioinen

Abstract Waste biomass (agave bagasse) and native birch wood were used as raw materials for a novel fractionation and derivation process to produce cellulose acetates (CAs). During the first stage of the fractionation process, a significant amount of hemicelluloses and lignin were dissolved from the biomass using a natural deep eutectic solvent (NADES) that consisted of a mixture of choline chloride and lactic acid with the molar ratio of 1:9. Then, the residual solid material was delignified by bleaching it with a mixture of acetic acid and sodium chlorite. The fractionation process generated differently purified pulps (celluloses) which were converted to CAs. The crystallinity index, polymerization degree, chemical composition, and thermal properties of the differently purified pulps and CAs were analyzed to evaluate the efficacy of the acetylation process and to characterize the CAs. The chemical derivation of the differently purified cellulose samples generated CAs with different degrees of substitution (DSs). The more purified the cellulose sample was, the higher its DS was. Moreover, some differences were observed between the acetylation efficiencies of birch and agave bagasse. Typically, cellulose purified from birch by treating it with NADES followed by bleaching was acetylated more completely (DS = 2.94) than that derived from agave bagasse (DS = 2.45). These results revealed that using green solvents, such as NADES, to treat both agave bagasse (waste biomass) and birch wood, allowed pure fractions to be obtained from biomass, and thus, biomass could be valorized into products such as CAs, which present a wide range of applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Thanh Xuan Le Thi ◽  
Hoai Lam Tran ◽  
Thanh Son Cu ◽  
Son Lam Ho

Omega 3, 6, and 9 fatty acids were separated and enriched successfully from the by-products of Vietnamese Basa fish processing by the deep eutectic solvent. The total amounts of omega fatty acids were about 57% in the raw material, and they were amounted to 91% after the first separation by DES. The optimal mass ratio is 20 g methyl ester with 200 g methanol and 15–20 g DES. Moreover, the ionic liquid-DES was successfully synthesized with the molar ratio of choline chloride/urea of 1 : 1 and 2 : 1. The characteristics of DES were determined and demonstrated by FTIR, TGA, DSC, 1H-NMR, and 13C-NMR analysis methods.


2015 ◽  
Vol 13 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Emine Sert

Abstract Within the framework of green chemistry, catalysts should be met different criteria such as biodegradability, recyclability, flammability, non-toxicity and low price. Acidic deep eutectic solvent (DES) have been synthesized for this purpose, by mixing para-toluene sulfonic acid and choline chloride. The catalytic activity of DES was studied in the esterification of acrylic acid with n-butanol. The usage of DES as catalyst is simple, safe and cheap. The effects of temperature, catalyst loading, n-butanol/acrylic acid molar ratio on the conversion of acrylic acid were performed. The batch reactor experiments were carried out at temperatures of 338, 348, 358 and 368 K, molar ratio of butanol to acrylic acid of 1, 2,3 and catalyst loading of 10, 15, 20 and 90 g/L. 90.2% of acrylic acid conversion was achieved at a temperature of 358 K and catalyst loading of 20 g/L. Reusability of DES was investigated. Reusability and catalytic activity makes DES efficient as catalyst.


2013 ◽  
Vol 763 ◽  
pp. 246-249
Author(s):  
Xiao Song ◽  
Peng Zhao

Flavonoids from Tussilago farfara L. was extracted with the assistance of microwave.Box-Behnken design (BBD) was employed to optimize extraction time; microwave power and ratio of water to raw material to obtain a high flavonoids yield.The optimum extraction conditions were as follows: 73.3% ethanol-water solvent, time 16.25 min and ratio of solvent to raw material 36.2ml/g.The yield of flavonoids was 11.37% based on the above mentioned conditions.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 506
Author(s):  
Jie Lu ◽  
Zhiqiang Huang ◽  
Yusheng Liu ◽  
Huimin Wang ◽  
Min Qiu ◽  
...  

Flavonoids have important biological activities, such as anti-inflammatory, antibacterial, antioxidant and whitening, which is a potential functional food raw material. However, the biological activity of Fengdan peony flavonoid is not particularly clear. Therefore, in this study, the peony flavonoid was extracted from Fengdan peony seed meal, and the antioxidant, antibacterial and whitening activities of the peony flavonoid were explored. The optimal extraction conditions were methanol concentration of 90%, solid-to-liquid ratio of 1:35 g:mL, temperature of 55 °C and time of 80 min; under these conditions, the yield of Fengdan peony flavonoid could reach 1.205 ± 0.019% (the ratio of the dry mass of rutin to the dry mass of peony seed meal). The clearance of Fengdan peony total flavonoids to 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, hydroxyl radical and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical could reach 75%, 70% and 97%, respectively. Fengdan peony flavonoid could inhibit the growth of the Gram-positive bacteria. The minimal inhibitory concentrations (MICs) of Fengdan peony flavonoid on S. aureus, B. anthracis, B. subtilis and C. perfringens were 0.0293 mg/mL, 0.1172 mg/mL, 0.2344 mg/mL and 7.500 mg/mL, respectively. The inhibition rate of Fengdan peony flavonoid on tyrosinase was 8.53–81.08%. This study intensely illustrated that the antioxidant, whitening and antibacterial activity of Fengdan peony total flavonoids were significant. Fengdan peony total flavonoids have a great possibility of being used as functional food materials.


2017 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
THERESIA AGNIEST PRICILLA VITANTI ◽  
KAWIJI KAWIJI ◽  
EDHI NURHARTADI

Vitanti TAP, Kawiji, Edhi N. 2012. Effect of extraction method on Curcuma xanthorrhiza oleoresin using solar dryer to concentration of curcuminoid, total phenol, and antioxidant activity. Biofarmasi 14: 1-9. Curcuma (Curcuma xanthorrhiza Roxb.) is a type of drug plant that has high enough capacity of production in Indonesia. Generally, commerced in the form of fresh curcuma or processed product as simple as simplicia and curcuma powder. Processed products that could be developed is curcuma oleoresin. It is a mixture of essential oils and resins obtained from extraction process of curcuma powder using an organic solvent. Oleoresin has the same flavor and aroma to the extracted material. Due to these characteristics, it is used as a flavor and food coloring, other than as a raw material in pharmaceutical industry. In addition, it also contains active compounds which can support the utilization of drug and food industries. This study aims to determine whether the size of the powder, powdered curcuma immersion time, and interactions between them that can be influenced the content of curcuminoids, total phenol and antioxidant activity of curcuma oleoresin. Selection of solar dryers in the drying process is based on previously studied that compare the natural drying technique with a solar dryer, and the best results of those studies are shown in the solar dryer. This research using completely randomized design with two factors: the size variation of curcuma powder (60, 80 and 100 mesh) and immersion time variation (extraction) of curcuma powder (12, 24 and 36 hours). The results showed that the powder size of curcuma and immersion time has an effect on curcuminoid content, total phenol and antioxidant activity of curcuma oleoresin. However, there are no interaction between both factors. That is, the size and the immersion time of curcuma powder do not affect each other on the content of curcuminoid, total phenol and activity of antioxidant.


2014 ◽  
Vol 1014 ◽  
pp. 61-64
Author(s):  
Xiao Song ◽  
Peng Zhao ◽  
Qing Hua Meng ◽  
Zhi Shu Tang ◽  
Chang Li Wang

Flavonoids from Platycarya Strobi lacea Sieb.et Zucc. was extracted with the assistance of microwave.Box-Behnken design (BBD) was employed to optimize extraction time; microwave power and ratio of solvent to raw material to obtain a high flavonoids yield. The optimum extraction conditions were as follows: 65.32% ethanol-water solvent, time 3.96 min and ratio of solvent to raw material 20.8 ml/g.The yield of flavonoids was 3.41% based on the above mentioned conditions.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5456
Author(s):  
Hongkun Xue ◽  
Jiaqi Tan ◽  
Qian Li ◽  
Jintian Tang ◽  
Xu Cai

Blueberry wine residues produced during the wine-brewing process contain abundant anthocyanins and other bioactive compounds. To extract anthocyanins from blueberry wine residues more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this work. The extraction process was optimized by response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins (9.32 ± 0.08 mg/g) from blueberry wine residues by UADESE were obtained at water content of 29%, ultrasonic power of 380 W, extraction temperature of 55 °C, and extraction time of 40 min. The AB-8 macroporous resin combined with Sephadex LH-20 techniques was used to purify the crude extract (CE) obtained under optimum extraction conditions and analyze the anthocyanins composition by HPLC-ESI-MS/MS. The cyanidin-3-rutinoside with purity of 92.81% was obtained. The HepG2 antitumor activity of CE was better than that of the purified anthocyanins component. Moreover, CE could increase the intracellular reactive oxygen species levels and the apoptosis, and arrest HepG2 cells in the S phases. These findings provided an effective and feasible method for anthocyanins extraction, and reduced the environmental burden of this waste.


2019 ◽  
Vol 9 (20) ◽  
pp. 4401 ◽  
Author(s):  
Karim ◽  
Aziz ◽  
Brza ◽  
Abdullah ◽  
Kadir

The anodic dissolution of bulk metallic copper was conducted in ionic liquids (ILs)—a deep eutectic solvent (DES) ((CH3)3NC2H4OH) comprised of a 1:2 molar ratio mixture of choline chloride Cl (ChCl), and ethylene glycol (EG)—and imidazolium-based ILs, such as C4mimCl, using electrochemical techniques, such as cyclic voltammetry, anodic linear sweep voltammetry, and chronopotentiometry.To investigate the electrochemical dissolution mechanism, electrochemical impedance spectroscopy (EIS) was used. In addition to spectroscopic techniques, for instance, UV-visible spectroscopy, microscopic techniques, such as atomic force microscopy (AFM), were used. The significant industrial importance of metallic copper has motivated several research groups to deal with such an invaluable metal. It was confirmed that the speciation of dissolved copper from the bulk phase at the interface region is [CuCl3]− and [CuCl4]2− in such chloride-rich media, and the EG determine the structure of the interfacial region in the electrochemical dissolution process. A super-saturated solution was produced at the electrode/solution interface and CuCl2 was deposited on the metal surface.


Sign in / Sign up

Export Citation Format

Share Document