Non-hydrostatic thermodynamics of chemical systems

This paper considers a multi-phase chemical system which includes solid substances, which can sustain non-hydrostatic stresses. The correct mechanical coordinates are introduced for a phase, which give the correct work done whether the dimensions of the phase are altered by deformation, phase transformations, or by chemical actions such as solution or crystallization at the surface of the phase. These coordinates are integrals over the surface of the phase, which are properties of affine transformations of points in the reference state of the phase. For coherent processes, during which atoms or molecules which are initially neighbours remain neighbours, the affine transformations are such that points of the reference space transform to remain coincident with the structural entities, such as idealized atoms etc, of the solid. Thus the ‘deformations’ of the space coincide with that of the solid. Such coherent processes are, for example, deformations, coherent transitions such as the α-β quartz transitions, diffusion of a mobile chemical component into the solid. Processes which involve surface changes such as solution or deposition of the basic material of the solid are incoherent, and in these cases, since chemical bonds are broken, it is assumed that the pressure must be normal. By making use of this latter fact, the change per mole of the coordinates resulting from such surface incoherent effects is determinable. However, while the coordinates V αβ are extensive if processes are limited to be either coherent or incoherent, it is shown that the molar change depends on the process. This property is reflected into the Gibbs function, through the terms containing the V αβ . However, the Gibbs function may be easily and conveniently used to obtain the conditions of equilibrium for all the above processes. Comparison with experiments on quartz is given. The empirical maximal energy principle of Thomas & Wooster for de-twinning (Dauphiné) of quartz is rigorously justified. It is shown that for a stressed solid in contact with a solution of the solid, the condition of equilibrium obtained by Gibbs is equivalent to the fact that μ — T s + P n v is a change per mole in the Gibbs function of the solid phase, for the processes of solution and crystallisation at the fluid/solid interface where the normal pressure P n is that of the fluid, u , s , v being the molar energy, entropy, volume of the solid. The equilibrium conditions for coherent phase transitions, and diffusion into a solid are also obtained. The mechanical coordinates V αβ are shown to be additive for a multi-phase system . It is also shown that the theory, which is described for simplicity first using infinitesimal deformation theory, is easily extended to finite deformations.

2003 ◽  
Vol 14 (07) ◽  
pp. 955-962 ◽  
Author(s):  
R. B. PANDEY ◽  
J. F. GETTRUST ◽  
RAY SEYFARTH ◽  
LUIS A. CUEVA-PARRA

Self-organized patterns in an immiscible fluid mixture of dissimilar particles driven from a source at the bottom are examined as a function of hydrostatic pressure bias by a Monte Carlo computer simulation. As the upward pressure bias competes with sedimentation due to gravity, a multi-phase system emerges: a dissociating solid phase from the source is separated from a migrating gas phase towards the top by an interface of mixed (bi-continuous) phase. Scaling of solid-to-gas phase with the altitude is nonuniversal and depends on both the range of the height/depth and the magnitude of the pressure bias. Onset of phase separation and layering is pronounced at low bias range.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1753
Author(s):  
Patrick Wittek ◽  
Felix Ellwanger ◽  
Heike P. Karbstein ◽  
M. Azad Emin

Plant-based meat analogues that mimic the characteristic structure and texture of meat are becoming increasingly popular. They can be produced by means of high moisture extrusion (HME), in which protein-rich raw materials are subjected to thermomechanical stresses in the extruder at high water content (>40%) and then forced through a cooling die. The cooling die, or generally the die section, is known to have a large influence on the products’ anisotropic structures, which are determined by the morphology of the underlying multi-phase system. However, the morphology development in the process and its relationship with the flow characteristics are not yet well understood and, therefore, investigated in this work. The results show that the underlying multi-phase system is already present in the screw section of the extruder. The morphology development mainly takes place in the tapered transition zone and the non-cooled zone, while the cooled zone only has a minor influence. The cross-sectional contraction and the cooling generate elongational flows and tensile stresses in the die section, whereas the highest tensile stresses are generated in the transition zone and are assumed to be the main factor for structure formation. Cooling also has an influence on the velocity gradients and, therefore, the shear stresses; the highest shear stresses are generated towards the die exit. The results further show that morphology development in the die section is mainly governed by deformation and orientation, while the breakup of phases appears to play a minor role. The size of the dispersed phase, i.e., size of individual particles, is presumably determined in the screw section and then stays the same over the die length. Overall, this study reveals that morphology development and flow characteristics need to be understood and controlled for a successful product design in HME, which, in turn, could be achieved by a targeted design of the extruders die section.


2012 ◽  
Vol 13 (6) ◽  
pp. 703-708 ◽  
Author(s):  
R. Fryczkowski ◽  
M. Gorczowska ◽  
B. Fryczkowska ◽  
J. Janicki

2006 ◽  
Vol 60 (6) ◽  
Author(s):  
M. Juraščík ◽  
M. Hucík ◽  
I. Sikula ◽  
J. Annus ◽  
J. Markoš

AbstractThe effect of the biomass presence on the overall circulation velocity, the linear velocities both in the riser and the downcomer and the overall gas hold-up was studied in a three-phase internal loop airlift reactor (ILALR). The measured data were compared with those obtained using a two-phase system (air—water). All experiments were carried out in a 40 dm3 ILALR at six different biomass concentrations (ranging from 0 g dm−3 to 7.5 g dm−3), at a temperature of 30°C, under atmospheric pressure. Air and water were used as the gas and liquid model media, respectively. Pellets of Aspergillus niger produced during the fermentation of glucose to gluconic acid in the ILALR were considered solid phase. In addition, liquid velocities were measured during the fermentation of glucose to gluconic acid using Aspergillus niger. All measurements were performed in a bubble circulation regime. At given experimental conditions the effect of the biomass on the circulation velocities in the ILALR was negligible. However, increasing of the biomass concentration led to lower values of the total gas hold-up.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 86 ◽  
Author(s):  
Leonid Burakovsky ◽  
Darby Luscher ◽  
Dean Preston ◽  
Sky Sjue ◽  
Diane Vaughan

The unified analytic melt-shear model that we introduced a decade ago is generalized to multi-phase materials. A new scheme for calculating the values of the model parameters for both the cold ( T = 0 ) shear modulus ( G ) and the melting temperature at all densities ( ρ ) is developed. The generalized melt-shear model is applied to molybdenum, a multi-phase material with a body-centered cubic (bcc) structure at low ρ which loses its dynamical stability with increasing pressure (P) and is therefore replaced by another (dynamically stable) solid structure at high ρ . One of the candidates for the high- ρ structure of Mo is face-centered cubic (fcc). The model is compared to (i) our ab initio results on the cold shear modulus of both bcc-Mo and fcc-Mo as a function of ρ , and (ii) the available theoretical results on the melting of bcc-Mo and our own quantum molecular dynamics (QMD) simulations of one melting point of fcc-Mo. Our generalized model of G ( ρ , T ) is used to calculate the shear modulus of bcc-Mo along its principal Hugoniot. It predicts that G of bcc-Mo increases with P up to ∼240 GPa and then decreases at higher P. This behavior is intrinsic to bcc-Mo and does not require the introduction of another solid phase such as Phase II suggested by Errandonea et al. Generalized melt-shear models for Ta and W also predict an increase in G followed by a decrease along the principal Hugoniot, hence this behavior may be typical for transition metals with ambient bcc structure that dynamically destabilize at high P. Thus, we concur with the conclusion reached in several recent papers (Nguyen et al., Zhang et al., Wang et al.) that no solid-solid phase transition can be definitively inferred on the basis of sound velocity data from shock experiments on Mo. Finally, our QMD simulations support the validity of the phase diagram of Mo suggested by Zeng et al.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5188
Author(s):  
Iris Raffeis ◽  
Frank Adjei-Kyeremeh ◽  
Uwe Vroomen ◽  
Silvia Richter ◽  
Andreas Bührig-Polaczek

Al-Cu-Li alloys are famous for their high strength, ductility and weight-saving properties, and have for many years been the aerospace alloy of choice. Depending on the alloy composition, this multi-phase system may give rise to several phases, including the major strengthening T1 (Al2CuLi) phase. Microstructure investigations have extensively been reported for conventionally processed alloys with little focus on their Additive Manufacturing (AM) characterised microstructures. In this work, the Laser Powder Bed Fusion (LPBF) built microstructures of an AA2099 Al-Cu-Li alloy are characterised in the as-built (no preheating) and preheat-treated (320 °C, 500 °C) conditions using various analytical techniques, including Synchrotron High-Energy X-ray Diffraction (S-HEXRD). The observed dislocations in the AM as-built condition with no detected T1 precipitates confirm the conventional view of the difficulty of T1 to nucleate on dislocations without appropriate heat treatments. Two main phases, T1 (Al2CuLi) and TB (Al7.5Cu4Li), were detected using S-HEXRD at both preheat-treated temperatures. Higher volume fraction of T1 measured in the 500 °C (75.2 HV0.1) sample resulted in a higher microhardness compared to the 320 °C (58.7 HV0.1) sample. Higher TB volume fraction measured in the 320 °C sample had a minimal strength effect.


2019 ◽  
Vol 1 (5) ◽  
Author(s):  
Abdullah Musa Ali ◽  
Eswaran Padmanabhan ◽  
Abubakar Mijinyawa ◽  
Mohammed Yerima Kwaya

Sign in / Sign up

Export Citation Format

Share Document