scholarly journals Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

2011 ◽  
Vol 279 (1729) ◽  
pp. 722-731 ◽  
Author(s):  
Toshiyuki Nakata ◽  
Hao Liu

Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca , with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

2020 ◽  
Vol 12 ◽  
pp. 175682932097798
Author(s):  
Han Bao ◽  
Wenqing Yang ◽  
Dongfu Ma ◽  
Wenping Song ◽  
Bifeng Song

Bionic micro aerial vehicles have become popular because of their high thrust efficiency and deceptive appearances. Leading edge or trailing edge devices (such as slots or flaps) are often used to improve the flight performance. Birds in nature also have leading-edge devices, known as the alula that can improve their flight performance at large angles of attack. In the present study, the aerodynamic performance of a flapping airfoil with alula is numerically simulated to illustrate the effects of different alula geometric parameters. Different alula relative angles of attack β (the angle between the chord line of the alula and that of the main airfoil) and vertical distances h between the alula and the main airfoil are simulated at pre-stall and post-stall conditions. Results show that at pre-stall condition, the lift increases with the relative angle of attack and the vertical distance, but the aerodynamic performance is degraded in the presence of alula compared with no alula, whereas at post-stall condition, the alula greatly enhances the lift. However, there seems to be an optimal relative angle of attack for the maximum lift enhancement at a fixed vertical distance considering the unsteady effect, which may indicate birds can adjust the alula twisting at different spanwise positions to achieve the best flight performance. Different alula geometric parameters may affect the aerodynamic force by modifying the pressure distribution along the airfoil. The results are instructive for design of flapping-wing bionic unmanned air vehicles.


Author(s):  
Liping Xu

The aerodynamic sources of the forward tone noise of transonic civil fans are analysed. The leading edge shockwave near the rotor tip section is identified as the main source of tone noise. By comparing the tone noise levels of the same fan operating at two different working lines, numerical calculations show that on the lower working line, the main passage shockwave is swallowed and locked into the blade passage, and the fan blades act as a shield to prevent the strong passage shock wave from propagating upstream. The calculations show that, by running the fan at a lower working line, up to 6 db abatement in the blade passing frequency (BPF) tone can be achieved through shielding the shockwave. With three dimensional CFD it is possible to design swept rotors which have desired shockwave structures near the tip region. Fan rotors with different swept leading edges have been designed to study this effect and comparisons in aerodynamics performances as well as the tone noise levels are made. It is predicted that in a swept rotor the leading edge shock strength can be further weakened and up to 5db further reduction in tone noise is possible. With a more secure shockwave shielding, a forward swept rotor has the combination of better aerodynamic performance and better noise abatement feature. The design and test results of a three dimensional fan rotor LNR2, featuring localised forward swept rotor are presented. Rig test results show that although the noise reduction through shock shielding has been demonstrated, the aerodynamics and noise are complicated by the problems specific to such localised forward swept fan.


Author(s):  
D. Bouchard ◽  
A. Asghar ◽  
J. Hardes ◽  
R. Edwards ◽  
W. D. E. Allan ◽  
...  

This paper addresses the issue of aerodynamic performance of a novel 3D leading edge modification to a reference vane. An analysis of tubercles found in nature and some engineering applications was used to synthesize new leading edge geometry. Three variations of the reference low pressure turbine vane were obtained by changing the characteristic parameters of the tubercles. Shock structure, surface flow visualization and total pressure measurements were made through experiments in a cascade rig, as well as through computational fluid dynamics. The tests were carried out at design zero incidence and off-design ±10-deg and ±5-deg incidences. The performance of the new 3D leading edge geometries was compared against the reference vane. Some leading edge tubercle configurations were effective at decreasing total pressure losses at positive inlet incidence angles. Numerical results supplemented experimental results.


2020 ◽  
Vol 10 (20) ◽  
pp. 7375
Author(s):  
Thanh Tien Dao ◽  
Thi Kim Loan Au ◽  
Soo Hyung Park ◽  
Hoon Cheol Park

Many previous studies have shown that wing corrugation of an insect wing is only structurally beneficial in enhancing the wing’s bending stiffness and does not much help to improve the aerodynamic performance of flapping wings. This study uses two-dimensional computational fluid dynamics (CFD) in aiming to identify a proper wing corrugation that can enhance the aerodynamic performance of the KUBeetle, an insect-like flapping-wing micro air vehicle (MAV), which operates at a Reynolds number of less than 13,000. For this purpose, various two-dimensional corrugated wings were numerically investigated. The two-dimensional flapping wing motion was extracted from the measured three-dimensional wing kinematics of the KUBeetle at spanwise locations of r = (0.375 and 0.75)R. The CFD analysis showed that at both spanwise locations, the corrugations placed over the entire wing were not beneficial for improving aerodynamic efficiency. However, for the two-dimensional flapping wing at the spanwise location of r = 0.375R, where the wing experiences relatively high angles of attack, three specially designed wings with leading-edge corrugation showed higher aerodynamic performance than that of the non-corrugated smooth wing. The improvement is closely related to the flow patterns formed around the wings. Therefore, the proposed leading-edge corrugation is suggested for the inboard wing of the KUBeetle to enhance aerodynamic performance. The corrugation in the inboard wing may also be structurally beneficial.


Author(s):  
Zhihui Li ◽  
Juan Du ◽  
Qianfeng Zhang ◽  
Guofeng Ji ◽  
Hongwu Zhang

Boundary-layer-ingesting fans and compressors in the next-generation turbofan engines require high-performance operations under distorted inflow. The aim of this work is to study the effects of inlet distortions including inlet stagnation pressure and temperature distortion, on the aerodynamic performance of a transonic axial fan. Firstly, the validated full-annulus, unsteady, three-dimensional computational fluid dynamic code in conjunction with detached Eddy simulation approach is used here to simulate the fan flows assembly with individual inlet stagnation pressure/temperature distortion. Then, the propagation process of the inlet distortion waves is analyzed to understand how the aerodynamic performance degradation is triggered. The simulation results show that the fan performance is remarkably degraded when the inlet distortion is introduced. The leading-edge spillage, the trailing edge back flow and the “tornado vortex” occur when parts of fan blades encounter the incoming distorted flows. Finally, the responses of fan to the combined inlet stagnation distortion effects are discussed in this paper. It is found that the combined distortion effects can be predicted based on the sum of the performance responses to the individual constituent distortions. Furthermore, the relative location of the constituent distortions shows a non-ignorable influence on the overall fan performance, especially for the intensified inlet distortion.


2020 ◽  
Vol 14 (2) ◽  
pp. 6888-6894
Author(s):  
Muhamad Ridzuan Arifin ◽  
A.F.M. Yamin ◽  
A.S. Abdullah ◽  
M.F. Zakaryia ◽  
S. Shuib ◽  
...  

Leading-edge vortex governs the aerodynamic force production of flapping wing flyers. The primary factor for lift enhancement is the leading-edge vortex (LEV) that allows for stall delay that is associated with unsteady fluid flow and thus generating extra lift during flapping flight. To access the effects of LEV to the aerodynamic performance of flapping wing, the three-dimensional numerical analysis of flow solver (FLUENT) are fully applied to simulate the flow pattern. The time-averaged aerodynamic performance (i.e., lift and drag) based on the effect of the advance ratio to the unsteadiness of the flapping wing will result in the flow regime of the flapping wing to be divided into two-state, unsteady state (J<1) and quasi-steady-state(J>1). To access the benefits of aerodynamic to the flapping wing, both set of parameters of velocities 2m/s to 8m/s at a high flapping frequency of 3 to 9 Hz corresponding to three angles of attacks of α = 0o to α = 30o. The result shows that as the advance ratio increases the generated lift and generated decreases until advance ratio, J =3 then the generated lift and drag does not change with increasing advance ratio. It is also found that the change of lift and drag with changing angle of attack changes with increasing advance ratio. At low advance ratio, the lift increase by 61% and the drag increase by 98% between α =100 and α =200. The lift increase by 28% and drag increase by 68% between α = 200 and α = 300. However, at high advance ratio, the lift increase by 59% and the drag increase by 80% between α =100 and α = 200, while between α =200 and α =300 the lift increase by 20% and drag increase by 64%. This suggest that the lift and drag slope decreases with increasing advance ratio. In this research, the results had shown that in the unsteady state flow, the LEV formation can be indicated during both strokes. The LEV is the main factor to the lift enhancement where it generated the lower suction of negative pressure. For unsteady state, the LEV was formed on the upper surface that increases the lift enhancement during downstroke while LEV was formed on the lower surface of the wing that generated the negative lift enhancement. The LEV seem to breakdown at the as the wing flap toward the ends on both strokes.      


Author(s):  
Naoki Tsuchiya ◽  
Yoshiya Nakamura ◽  
Shinya Goto ◽  
Hidekazu Kodama ◽  
Osamu Nozaki ◽  
...  

This paper describes a low noise FEGV (Fan Exit Guide Vane), which is designed by a fan noise prediction method based on CFD. Fan noise is predicted by a hybrid scheme, which is the combination of three-dimensional CFD and three-dimensional linear theory. Characteristics of noise sources are investigated in some kinds of FEGV shapes. High amplitude areas spread not only along the leading edge but also in the span-wise positions along the mid-chord. It is found that high amplitude areas around the mid-chord make an important role in noise generation, and appropriate aft-ward swept angle and span-wise distribution of leaned angle could reduce the amplitude of the noise sources keeping aerodynamic performance. A fan noise test for fan scale models has been conducted at an anechoic test facility in IHI Mizuho to demonstrate noise reduction and performance of low noise FEGV. Noise reduction can be achieved keeping aerodynamic performance compared to conventional straight FEGV.


2004 ◽  
Vol 126 (4) ◽  
pp. 1025-1033 ◽  
Author(s):  
S. Schreck ◽  
M. Robinson

Under zero yaw conditions, rotational effects substantially and routinely augment HAWT blade aerodynamic response. To better comprehend the fluid dynamic mechanisms underlying this phenomenon, time dependent blade surface pressure data were acquired from the National Renewable Energy Laboratory (NREL) Unsteady Aerodynamics Experiment (UAE), a full-scale HAWT tested in the NASA Ames 80 ft×120 ft wind tunnel. These surface pressure data were processed to obtain normal force and flow field topology data. Further analyses were carried out in a manner that allowed tip speed ratio effects to be isolated from other confounding influences. Results showed clear correlations between normal forces, flow field topologies, and tip speed ratios. These relationships changed significantly at different blade radial locations, pointing to the complex three-dimensional flow physics present on rotating HAWT blades.


Author(s):  
Shun He ◽  
Shijun Guo ◽  
Wenhao Li

An investigation into transonic flutter characteristic of an airfoil conceived with the morphing leading and trailing edges has been carried out. Computational fluid dynamics (CFD) is used to calculate the unsteady aerodynamic force in transonic flow. An aerodynamic reduced order model (ROM) based on autoregressive model with exogenous input (ARX) is used in the numerical simulation. The flutter solution is determined by eigenvalue analysis at specific Mach number. The approach is validated by comparing the transonic flutter characteristics of the Isogai wing with relevant literatures before applied to a morphing airfoil. The study reveals that by employing the morphing trailing edge, the shock wave forms and shifts to the trailing edge at a lower Mach number, and aerodynamic force stabilization happens earlier. Meanwhile, the minimum flutter speed increases and transonic dip occurs at a lower Mach number. It is also noted that leading edge morphing has negligible effect on the appearance of the shock wave and transonic flutter. The mechanism of improving the transonic flutter characteristics by morphing technology is discussed by correlating shock wave location on airfoil surface, unsteady aerodynamics with flutter solution.


Author(s):  
Chenkai Zhang ◽  
Jun Hu ◽  
Zhiqiang Wang ◽  
Chao Yin ◽  
Wei Yan

This paper presents numerical optimization of a compressor rotor, to deepen the knowledge of endwall flow in the large-scale axial subsonic compressor, accordingly reduce its endwall loss and improve its aerodynamic performance. With numerical simulation and numerical optimization tools, three-dimensional stacking principle is optimized to improve the design operation point performance for the rotor. Results show that, hub region of the rotor cannot undertake large blade loading; compared to the prototype rotor, obvious aerodynamic performance improvements locate near the hub area, and a certain degree of positive dihedral in this region effectively helps to reduce its flow loss. The effect of “loaded leading edge and unloaded trailing edge” due to positive dihedral was shown, which suppresses flow separation near the trailing edge, consequently obviously reduces the flow loss and largely improves the rotor aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document