scholarly journals Oestrogen-related receptor α is required for transepithelial H + secretion in zebrafish

2016 ◽  
Vol 283 (1825) ◽  
pp. 20152582 ◽  
Author(s):  
Ying-Jey Guh ◽  
Chao-Yew Yang ◽  
Sian-Tai Liu ◽  
Chang-Jen Huang ◽  
Pung-Pung Hwang

Oestrogen-related receptor α (ERRα) is an orphan nuclear receptor which is important for adaptive metabolic responses under conditions of increased energy demand, such as cold, exercise and fasting. Importantly, metabolism under these conditions is usually accompanied by elevated production of organic acids, which may threaten the body acid–base status. Although ERR α is known to help regulate ion transport by the renal epithelia, its role in the transport of acid–base equivalents remains unknown. Here, we tested the hypothesis that ERR α is involved in acid–base regulation mechanisms by using zebrafish as the model to examine the effects of ERR α on transepithelial H + secretion. ERR α is abundantly expressed in H + -pump-rich cells (HR cells), a group of ionocytes responsible for H + secretion in the skin of developing embryos, and its expression is stimulated by acidic (pH 4) environments. Knockdown of ERR α impairs both basal and low pH-induced H + secretion in the yolk-sac skin, which is accompanied by decreased expression of H + -secreting-related transporters. The effect of ERR α on H + secretion is achieved through regulating both the total number of HR cells and the function of individual HR cells. These results demonstrate, for the first time, that ERR α is required for transepithelial H + secretion for systemic acid–base homeostasis.

1993 ◽  
Vol 265 (6) ◽  
pp. R1339-R1343 ◽  
Author(s):  
L. G. Branco ◽  
H. O. Portner ◽  
S. C. Wood

Hypoxia elicits behavioral hypothermia in alligators. Under normoxic conditions, the selected body temperature is 27.8 +/- 1.2 degrees C. However, when inspired O2 is lowered to 4%, selected body temperature decreases to 15.4 +/- 1.0 degrees C. The threshold for the behavioral hypothermia is between 4 and 5% inspired O2, the lowest threshold measured so far in terrestrial vertebrates. This study assessed the physiological significance of the behavioral hypothermia. The body temperature was clamped at 15, 25, and 35 degrees C for measurements of ventilation, blood gases, metabolic rate, plasma lactate, and acid-base status. Hypoxia-induced changes in ventilation, acid-base status, oxygen consumption, and lactate were proportional to body temperature, being pronounced at 35 degrees C, less at 25 degrees C, and absent at 15 degrees C. The correlation between selected body temperature under severe hypoxia and the measured parameters show that behavioral hypothermia is a beneficial response to hypoxia in alligators.


1986 ◽  
Vol 122 (1) ◽  
pp. 51-64
Author(s):  
H. O. PÖRTNER ◽  
S. VOGELER ◽  
M. K. GRIESHABER

Intra- and extracellular acid-base status and changes of coelomic PCOCO2 were investigated during recovery following 24 h of anaerobiosis in Sipunculus nudus L. Metabolism, gas exchange and acid-base status were compared in animals collected during March and October. Anaerobiosis led to an uncompensated metabolic acidosis, the degree of the acidosis depending on the metabolic rate of the animals. During initial recovery in March animals, the acidosis was transiently aggravated in the extracellular, but not in the intracellular, compartment, indicating an efficient regulation of intracellular pH as soon as oxygen was available in the coelomic fluid. The extracellular acidosis was predominantly of non-respiratory origin. The non-respiratory part of the acidosis is attributed to the repletion of the phospho-l-arginine pool. The proton yield calculated from phosphagen resynthesis was highly correlated in time and in quantity to the observed negative base excess in the extracellular compartment. In October animals, strombine accumulation may have contributed to the acidosis that develops during recovery. The amount of succinate, propionate, and acetate in the coelomic plasma had already decreased when the acidosis developed. This discrepancy supports the conclusion that protons move between the body compartments independent of the distribution of anionic metabolites. The respiratory part of the acidosis is attributed to the repayment of an oxygen debt. The increase of PCOCO2 is higher in October than in March animals, probably because of differences in metabolic rate The time course of acid-base disturbances and their compensation is discussed in relation to the time course of metabolic events during recovery and to the priorities of the different processes observed.


2017 ◽  
Vol 42 (12) ◽  
pp. 1330-1340 ◽  
Author(s):  
Enni-Maria Hietavala ◽  
Jeffrey R. Stout ◽  
Lynda A. Frassetto ◽  
Risto Puurtinen ◽  
Hannu Pitkänen ◽  
...  

Diet composition influences acid-base status of the body. This may become more relevant as renal functional capacity declines with aging. We examined the effects of low (LD) versus high dietary acid load (HD) on blood acid-base status and exercise performance. Participants included 22 adolescents, 33 young adults (YA), and 33 elderly (EL), who followed a 7-day LD and HD in a randomized order. At the end of both diet periods the subjects performed a cycle ergometer test (3 × 10 min at 35%, 55%, 75%, and (except EL) until exhaustion at 100% of maximal oxygen uptake). At the beginning of and after the diet periods, blood samples were collected at rest and after all workloads. Oxygen uptake, respiratory exchange ratio (RER), and heart rate (HR) were monitored during cycling. In YA and EL, bicarbonate (HCO3−) and base excess (BE) decreased over the HD period, and HCO3−, BE, and pH were lower at rest after HD compared with LD. In YA and EL women, HCO3− and BE were lower at submaximal workloads after HD compared with LD. In YA women, the maximal workload was 19% shorter and maximal oxygen uptake, RER, and HR were lower after HD compared with LD. Our data uniquely suggests that better renal function is associated with higher availability of bases, which may diminish exercise-induced acidosis and improve maximal aerobic performance. Differences in glomerular filtration rate between the subject groups likely explains the larger effects of dietary acid load in the elderly compared with younger subjects and in women compared with men.


Author(s):  
Natalia Voroshylova ◽  
◽  
Nelia Melnikova ◽  

The work is devoted to the study of the influence of changes in the acid-base state on the indices of mineral metabolism in the body of cadmium sulphate-poisoned 6 months age-rats. It is known that the entry of cadmium salts into the body causes disorders of protein, lipid, carbohydrate, and mineral metabolism. As well-known, the endotoxicants affect cellular structures and activate lysosomal enzymes, block mitochondrial oxidation and ribosomal synthesis, initiate free radical processes, that are accompanied by disturbance of rheology and blood coagulation, micro- and macro-circulation, water-electrolyte balance. Such caused alterations in macro- and microelement composition of poisoned animals’ organisms disrupt the course of numerous metabolic processes. The research was conducted on the basis of the Department of Biochemistry and Vivarium of the National University of Life and Environmental Sciences of Ukraine using adult 6 months-age outbred rats breeding of the Research and Production Center of Laboratory Animal Husbandry of Educational and Scientific Institute of Veterinary Medicine and Quality and Safety of Livestock Products. Biological models of introduction of rats into the state of experimental metabolic acidosis and alkalosis before and after cadmium sulphate poisoning have been developed, as well as indices of acid-base status and mineral metabolism of the developed experimental models have been studied. The influence of the changes of parameters of acid-base state of the body on the content in the blood of poisoned rats of macronutrients (sodium, potassium, calcium, magnesium, inorganic phosphorus) and trace elements (copper, zinc, and iron). At compare of the changes in parameters of acid-base status of the blood of cadmium sulfate-poisoned animals, it was noted that the state of experimental metabolic acidosis is more expressed than alkalosis, that is more effective for correction and normalization of mineral metabolism in poisoned rats.


2014 ◽  
Vol 1 (2) ◽  
pp. 143-147
Author(s):  
Md. Ansar Ali ◽  
Kaniz Hasina ◽  
Shahnoor Islam ◽  
Md. Ashraf Ul Huq ◽  
Md. Mahbub-Ul Alam ◽  
...  

Background: Different treatment modalities and procedures have been tried for the management of infantile hypertrophic pyloric stenosis. But surgery remains the mainstay for management of IHPS. Ramstedt’s pyloromyotomy was described almost over a hundred years ago and to date remains the surgical technique of choice. An alternative and better technique is the double-Y pyloromyotomy, which offer better results for management of this common condition.Methods: A prospective comparative interventional study of 40 patients with IHPS was carried out over a period of 2 years from July 2008 to July 2010. The patients were divided into 2 equal groups of 20 patients in each. The study was designed that all patients selected for study were optimized preoperatively regarding to hydration, acid-base status and electrolytes imbalance. All surgeries were performed after obtaining informed consent. Standard preoperative preparation and postoperative feeding regimes were used. The patients were operated on an alternate basis, i.e., one patient by Double-Y Pyloromyotomy(DY) and the next by aRamstedt’s Pyloromyotomy (RP). Data on patient demographics, operative time, anesthesia complications, postoperative complications including vomiting and weight gain were collected. Patients were followed up for a period of 3 months postoperatively. Statistical assessments were done by using t test.Results: From July 2008 through July 2010, fourty patients were finally analyzed for this study. Any statistical differences were observed in patient population regarding age, sex, weight at presentation, symptoms and clinical condition including electrolytes imbalance and acid-base status were recorded. Significant differences were found in postoperative vomiting and weight gain. Data of post operative vomiting and weight gain in both groups were collected. Vomiting in double-Y(DY) pyloromyotomy group (1.21 ± 0.45days) vs Ramstedt’s pyloromyotomy (RP) group(3.03 ± 0.37days) p= 0.0001.Weight gain after 1st 10 days DY vs RP is ( 298 ± 57.94 gm vs193±19.8 gm p=0.0014), after 1 month (676.67±149.84 gm vs 466.67 ± 127.71 gm, p=0.0001), after 2months (741.33± 278.74 gm vs 490±80.62 gm, p=0.002) and after 3 months (582±36.01gm vs 453.33±51.64 gm, p=0.0001).No long-term complications were reported and no re-do yloromyotomy was needed.Conclusion: The double-Y pyloromyotomy seems to be a better technique for the surgical management of IHPS. It may offer a better functional outcome in term of postoperative vomiting and weight gain.DOI: http://dx.doi.org/10.3329/jpsb.v1i2.19532


Author(s):  
Ivar Gøthgen ◽  
Ole Siggaard-Andersen ◽  
Jens Rasmussen ◽  
Peter Wimberley ◽  
Niels Fogh. Andersen

Sign in / Sign up

Export Citation Format

Share Document