scholarly journals Metabolic rate covaries with fitness and the pace of the life history in the field

2016 ◽  
Vol 283 (1831) ◽  
pp. 20160323 ◽  
Author(s):  
Amanda K. Pettersen ◽  
Craig R. White ◽  
Dustin J. Marshall

Metabolic rate reflects the ‘pace of life’ in every organism. Metabolic rate is related to an organism's capacity for essential maintenance, growth and reproduction—all of which interact to affect fitness. Although thousands of measurements of metabolic rate have been made, the microevolutionary forces that shape metabolic rate remain poorly resolved. The relationship between metabolic rate and components of fitness are often inconsistent, possibly because these fitness components incompletely map to actual fitness and often negatively covary with each other. Here we measure metabolic rate across ontogeny and monitor its effects on actual fitness (lifetime reproductive output) for a marine bryozoan in the field. We also measure key components of fitness throughout the entire life history including growth rate, longevity and age at the onset of reproduction. We found that correlational selection favours individuals with higher metabolic rates in one stage and lower metabolic rates in the other—individuals with similar metabolic rates in each developmental stage displayed the lowest fitness. Furthermore, individuals with the lowest metabolic rates lived for longer and reproduced more, but they also grew more slowly and took longer to reproduce initially. That metabolic rate is related to the pace of the life history in nature has long been suggested by macroevolutionary patterns but this study reveals the microevolutionary processes that probably generated these patterns.

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


2004 ◽  
Vol 97 (5) ◽  
pp. 1915-1922 ◽  
Author(s):  
Wayne A. Van Voorhies ◽  
Aziz A. Khazaeli ◽  
James W. Curtsinger

In a recent study examining the relationship between longevity and metabolism in a large number of recombinant inbred Drosophila melanogaster lines, we found no indication of the inverse relationship between longevity and metabolic rate that one would expect under the classical “rate of living” model. A potential limitation in generalizing from that study is that it was conducted on experimental material derived from a single set of parental strains originally developed over 20 years ago. To determine whether the observations made with those lines are characteristic of the species, we studied metabolic rates and longevities in a second, independently derived set of recombinant inbred lines. We found no correlation in these lines between metabolic rate and longevity, indicating that the ability to both maintain a normal metabolic rate and have extended longevity may apply to D. melanogaster in general. To determine how closely our measurements reflect metabolic rates of flies maintained under conditions of life span assays, we used long-term, flow-through metabolic rate measurements and closed system respirometry to examine the effects of variables such as time of day, feeding state, fly density, mobility of the flies, and nitrogen knockout on D. melanogaster metabolic rate. We found that CO2 production estimated in individual flies accurately reflects metabolic rates of flies under the conditions used for longevity assays.


1990 ◽  
Vol 151 (1) ◽  
pp. 349-359 ◽  
Author(s):  
F. Geiser ◽  
R. V. Baudinette

1. Rewarming rate from torpor and body mass were inversely related in 86 mammals ranging in body mass between 2 and 8500 g. 2. Most of the mammalian taxa investigated showed a similar change of rewarming rate with body mass. Only the insectivores showed a more pronounced increase in rewarming with a decrease in body mass than did the other taxa. The rates of rewarming of marsupials were similar to those of placentals. 3. At low air temperature (Ta), the rate of rewarming of marsupials was not related to body mass, although a strong relationship between the two variables was observed in the same species at high Ta. 4. The slopes relating rewarming rates and body mass of the mammalian groups and taxa analysed here were similar to those obtained earlier for mass-specific basal metabolic rate (BMR) and body mass in mammals, suggesting that the rate of rewarming and BMR are physiologically linked.


2006 ◽  
Vol 274 (1607) ◽  
pp. 287-293 ◽  
Author(s):  
Craig R White ◽  
Tim M Blackburn ◽  
Graham R Martin ◽  
Patrick J Butler

A classic example of ecophysiological adaptation is the observation that animals from hot arid environments have lower basal metabolic rates (BMRs, ml O 2  min −1 ) than those from non-arid (luxuriant) ones. However, the term ‘arid’ conceals within it a multitude of characteristics including extreme ambient temperatures ( T a , °C) and low annual net primary productivities (NPPs, g C m −2 ), both of which have been shown to correlate with BMR. To assess the relationship between environmental characteristics and metabolic rate in birds, we collated BMR measurements for 92 populations representing 90 wild-caught species and examined the relationships between BMR and NPP, T a , annual temperature range ( T r ), precipitation and intra-annual coefficient of variation of precipitation ( P CV ). Using conventional non-phylogenetic and phylogenetic generalized least-squares approaches, we found no support for a relationship between BMR and NPP, despite including species captured throughout the world in environments spanning a 35-fold range in NPP. Instead, BMR was negatively associated with T a and T r , and positively associated with P CV .


2010 ◽  
Vol 56 (6) ◽  
pp. 741-758 ◽  
Author(s):  
Andrew E. Mckechnie ◽  
David L. Swanson

Abstract The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of metabolic power output) present a method for elucidating the effects of ecological and evolutionary factors on the interface between physiology and life history in birds. In this paper we review variation in avian metabolic rates [basal metabolic rate (BMR; minimum normothermic metabolic rate), summit metabolic rate (Msum; maximal thermoregulatory metabolic rate), and maximal metabolic rate (MMR; maximal exercise metabolic rate)], the factors associated with this variation, the evidence for functional links between these metabolic traits, and the ecological and evolutionary significance of avian metabolic diversity. Both lower and upper limits to metabolic power production are phenotypically flexible traits, and vary in association with numerous ecological and evolutionary factors. For both inter- and intraspecific comparisons, lower and upper limits to metabolic power production are generally upregulated in response to energetically demanding conditions and downregulated when energetic demands are relaxed, or under conditions of energetic scarcity. Positive correlations have been documented between BMR, Msum and MMR in some, but not all studies on birds, providing partial support for the idea of a functional link between lower and upper limits to metabolic power production, but more intraspecific studies are needed to determine the robustness of this conclusion. Correlations between BMR and field metabolic rate (or daily energy expenditure) in birds are variable, suggesting that the linkage between these traits is subject to behavioral adjustment, and studies of the relationship between field and maximal metabolic rates are lacking. Our understanding of avian metabolic diversity would benefit from future studies of: (1) the functional and mechanistic links between lower and upper limits of metabolic power output; (2) the environmental and ecological cues driving phenotypically flexible metabolic responses, and how responses to such cues might impact population responses to climate change; (3) the shapes of metabolic reaction norms and their association with environmental variability; and (4) the relationship of metabolic variation to fitness, including studies of repeatability and heritability of minimum and maximum metabolic power output.


2019 ◽  
Vol 15 (4) ◽  
pp. 20180837 ◽  
Author(s):  
Orvil Grunmeier ◽  
Michael D. D'Emic

Osteocytes are mature versions of osteoblasts, bone-forming cells that develop in two ways: via ‘static’ osteogenesis, differentiating and ossifying tissue in situ to form a scaffold upon which other bone can form, or ‘dynamic’ osteogenesis, migrating to infill or lay down bone around neurovasculature. A previous study regressed the volume of osteocyte lacunae derived from dynamic osteogenesis (DO) of a broad sample of extant bird species against body mass, the growth rate constant ( k ), mass-specific metabolic rate, genome size, and erythrocyte size. There were significant relationships with body mass, growth rate, metabolic rate, and genome size, with the latter being the strongest. Using the same avian histological dataset, we measured over 3800 osteocyte lacunar axes derived from static osteogenesis (SO) in order to look for differences in the strength of form–function relationships inferred for DO-derived lacunae at the cellular and tissue levels. The relationship between osteocyte lacunar volume and body mass was stronger when measuring SO lacunae, whereas relationships between osteocyte lacunar volume versus growth rate and basal metabolic rate disappeared. The relationship between osteocyte lacuna volume and genome size remained significant and moderately strong when measuring SO lacunae, whereas osteocyte lacuna volume was still unrelated to erythrocyte size. Our results indicate that growth and metabolic rate signals are contained in avian DO but not SO osteocyte lacunae, suggesting that the former should be used in estimating these parameters in extinct animals.


1986 ◽  
Vol 228 (1251) ◽  
pp. 127-132 ◽  

In colonies of the cheilostome bryozoan Celleporella hyalina (L.), water flow regime has a significant effect on colony growth rate and, indirectly, on the number of reproductive zooids produced. Higher growth rates occur under conditions of higher water flow. Sex ratio and reproductive output are not, however, significantly affected. Colonies of different genotypes show significant differences in their reproductive versus somatic investment, and in their allocation of resources to male and female functions. There is therefore genetically based variation in life history strategy within the population of colonies. This variation may reflect limitation of normalizing selection imposed by microenvironmental variability.


Author(s):  
Mainak Bhattacharjee ◽  
Debashis Mazumdar

The defense or military expenditure is a vital necessity to any nation insofar as the roles of internal peace and immunity against foreign aggression in ensuring progress of a nation in all relevant fronts are concerned. In this chapter, it has been observed that the relationship between military expenditure and the growth rate GDP is nonlinear in the sense that at first with increase in the military expenditure the growth rate rises and after reaching the peak it declines with the further increase. There are also significant opportunity costs of military expenditure both in terms of GDP and economic development as a step-up in the military expenditure leads to the decline in the other forms productive expenditures like that in health, education, infrastructure inter-alia. This implies the necessity of military expenditure needs to be lowered which can be made possible by improving international harmony and imparting more bonhomie among the nations particularly amongst those which are close neighbors.


1964 ◽  
Vol 96 (7) ◽  
pp. 991-1004 ◽  
Author(s):  
Margaret Rae MacKay

AbstractThe information to be obtained from thorough life-history studies is an extremely useful tool, perhaps especially so when ecology is being emphasized, as it is to-day, by the life-table and other mathematical approaches to the study of population processes. This information is desired by workers in many fields of entomology – by the biological and chemical control experts, the biomathematicians, the theorists and even the taxonomists. However, much of the knowledge that these workers require, for instance the fine distinctions of behaviour and environment, has been overlooked in most life-history studies, and I strongly suspect that one of the weaknesses of studies of this nature has been the failure to analyse the mode of living of an insect (or, in the case of Lepidoptera, of the immature forms) in relation to the anatomy on one hand and environmental circumstances on the other. To look for these relationships, I believe that one requires (a) the ability and perseverance to perceive detail as minute as that required for a taxonomic study, and (b) a considerable knowledge of the taxonomic detail that is to be obtained from basic morphological studies. Therefore, in this paper, attention is drawn to pertinent structural characters of lepidopterous larvae and their probable connection with the behaviour and microhabitats of the larvae, in the hope that some guidance may be offered to future students of life-histories, at least in Lepidoptera.


2008 ◽  
Vol 52 (No. 9) ◽  
pp. 277-283 ◽  
Author(s):  
J. Bouška ◽  
M. Štípková ◽  
M. Krejčová ◽  
L. Bartoň

The objective of the study was to determine the effect of growth and development intensity in Holstein replacement heifers on economically important animal traits. The intensity of growth was assessed by the average live weight gain until 14 months of age. In addition, live weight and height at the sacrum at 14 months of age were analysed as indicators of growth and development when evaluating the length of productive life. The milk yield of first-calvers increased as the average daily live weight gain in the rearing period increased. An opposite tendency was recorded for cows in their second and third lactation and the total production also decreased with a higher growth rate of heifers. The analysis of the relationship between growth rate and the following reproduction traits revealed that the increased average daily live weight gain to 14 months was subsequently associated with reduced reproduction efficiency in cows. The differences between the groups with the lowest and the highest average live weight gains in the number of days open in the first and second calving interval were 26.78 and 17.47 days, respectively. This tendency was also confirmed in the other reproduction traits analysed. Productive life was significantly longer in animals with the lowest intensity of growth and development compared to the other groups (2.17 to 5.49 months, <i>P</i> < 0.01).


Sign in / Sign up

Export Citation Format

Share Document