scholarly journals Variability of complex oscillatory regimes in the stochastic model of cold-flame combustion of a hydrocarbon mixture

Author(s):  
I. Bashkirtseva ◽  
E. Slepukhina

Processes of the cold-flame combustion of a mixture of two hydrocarbons are studied on the base of a three-dimensional nonlinear dynamical model. Bifurcation analysis of the deterministic model reveals mono- and bistability parameter zones with equilibrium and oscillatory attractors. For this model, effects of random disturbances in the bistability parameter zone are studied. We show that random forcing causes transitions between coexisting stable equilibria and limit cycles with the formation of complex stochastic mixed-mode oscillations. Properties of these oscillatory regimes are studied by means of statistics of interspike intervals. A phenomenon of anti-coherence resonance is discussed. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.

2016 ◽  
Vol 26 (12) ◽  
pp. 1630032 ◽  
Author(s):  
Irina Bashkirtseva ◽  
Sergei Fedotov ◽  
Lev Ryashko ◽  
Evdokia Slepukhina

The stochastically forced three-dimensional Hindmarsh–Rose model of neural activity is considered. We study the effect of random disturbances in parametric zones where the deterministic model exhibits mono- and bistable dynamic regimes with period-adding bifurcations of oscillatory modes. It is shown that in both cases the phenomenon of noise-induced bursting is observed. In the monostable zone, where the only attractor of the system is a stable equilibrium, this effect is connected with a stochastic generation of large-amplitude oscillations due to the high excitability of the model. In a parametric zone of coexisting stable equilibria and limit cycles, bursts appear due to noise-induced transitions between the attractors. For a quantitative analysis of the noise-induced bursting and corresponding stochastic bifurcations, an approach based on the stochastic sensitivity function (SSF) technique is applied. Our estimations of the strength of noise that generates such qualitative changes in stochastic dynamics are in a good agreement with the direct numerical simulation. A relationship of the noise-induced generation of bursts with transitions from order to chaos is discussed.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 879 ◽  
Author(s):  
Adel Ouannas ◽  
Othman Abdullah Almatroud ◽  
Amina Aicha Khennaoui ◽  
Mohammad Mossa Alsawalha ◽  
Dumitru Baleanu ◽  
...  

Recently, hidden attractors with stable equilibria have received considerable attention in chaos theory and nonlinear dynamical systems. Based on discrete fractional calculus, this paper proposes a simple two-dimensional and three-dimensional fractional maps. Both fractional maps are chaotic and have a unique equilibrium point. Results show that the dynamics of the proposed fractional maps are sensitive to both initial conditions and fractional order. There are coexisting attractors which have been displayed in terms of bifurcation diagrams, phase portraits and a 0-1 test. Furthermore, control schemes are introduced to stabilize the chaotic trajectories of the two novel systems.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950186 ◽  
Author(s):  
Irina Bashkirtseva ◽  
Lev Ryashko

We study the probabilistic behavior of the Hodgkin–Huxley neuron model in the presence of random forcing of the external current parameter. The stochastic excitement in the zone of stable equilibria is illustrated by the statistics of interspike intervals and probabilistic distributions of mixed-mode oscillations. For the parametric analysis of this phenomenon, a constructive method for stochastic sensitivity and confidence ellipsoids is suggested. It is shown how to simplify this analysis using the principal direction approach. A constructive application of this technique is demonstrated by analyzing the stochastic excitement in the Hodgkin–Huxley model.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050026 ◽  
Author(s):  
Zahra Faghani ◽  
Fahimeh Nazarimehr ◽  
Sajad Jafari ◽  
Julien C. Sprott

In this paper, some new three-dimensional chaotic systems are proposed. The special property of these autonomous systems is their identical eigenvalues. The systems are designed based on the general form of quadratic jerk systems with 10 terms, and some systems with stable equilibria. Using a systematic computer search, 12 simple chaotic systems with identical eigenvalues were found. We believe that systems with identical eigenvalues are described here for the first time. These simple systems are listed in this paper, and their dynamical properties are investigated.


2011 ◽  
Vol 142 ◽  
pp. 107-110
Author(s):  
Ming Jun Han ◽  
You Tang Li ◽  
Ping Qiu ◽  
Xin Zhi Wang

The nonlinear dynamical equations are established by using the method of quasi-shells for three-dimensional shallow spherical shells with circular bottom. Displacement mode that meets the boundary conditions of fixed edges is given by using the method of the separate variable, A nonlinear forced vibration equation containing the second and the third order is derived by using the method of Galerkin. The stability of the equilibrium point is studied by using the Floquet exponent.


2021 ◽  
pp. 2150300
Author(s):  
M. Younis ◽  
A. R. Seadawy ◽  
M. Bilal ◽  
S. T. R. Rizvi ◽  
Saad Althobaiti ◽  
...  

A particular attention is paid to the nonlinear dynamical exact wave solutions to the (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equation (DJKME). A variety of solutions are extracted in different shapes like dark, singular, dark-singular by implementing [Formula: see text]-expansion function method and modified direct algebraic method. In addition, we also secure singular periodic and plane wave solutions with arbitrary parameters. We also discussed the modulation instability analysis of the governing model. The constraint conditions for the validity of existence of solutions are also reported. Moreover, three-dimensional and two-dimensional, and their corresponding contour graphs are sketched for a better understanding of the derived solutions with the values of arbitrary parameters.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050062 ◽  
Author(s):  
Chunsheng Feng ◽  
Qiujian Huang ◽  
Yongjian Liu

Little seems to be known about the study of the chaotic system with only Lyapunov stable equilibria from the perspective of differential geometry. Therefore, this paper presents Jacobi analysis of an unusual three-dimensional (3D) autonomous chaotic system. Under certain parameter conditions, this system has positive Lyapunov exponents and only two linear stable equilibrium points, which means that chaotic attractor and Lyapunov stable equilibria coexist. The dynamical behavior of the deviation vector near the whole trajectories (including all equilibrium points) is analyzed in detail. The results show that the value of the deviation curvature tensor at equilibrium points is only related to parameters; the two equilibrium points of the system are Jacobi stable if the parameters satisfy certain conditions. Particularly, for a specific set of parameters, the linear stable equilibrium points of the system are always Jacobi unstable. A periodic orbit that is Lyapunov stable is also proven to be always Jacobi unstable. Next, Jacobi-stable regions of the Lorenz system, the Chen system and the system under study are compared for specific parameters. It can be found that although these three chaotic systems are very similar, their regions of Jacobi stable parameters are much different. Finally, by comparing Jacobi stability with Lyapunov stability, the obtained results demonstrate that the Jacobi stable parameter region is basically symmetric with the Lyapunov stable parameter region.


2019 ◽  
Vol 86 (10) ◽  
Author(s):  
Hamed Farokhi ◽  
Mergen H. Ghayesh

Abstract This paper investigates the nonlinear static response as well as nonlinear forced dynamics of a clamped–clamped beam actuated by piezoelectric patches partially covering the beam from both sides. This study is the first to develop a high-dimensional nonlinear model for such a piezoelectric-beam configuration. The nonlinear dynamical resonance characteristics of the electromechanical system are examined under simultaneous DC and AC piezoelectric actuations, while highlighting the effects of modal energy transfer and internal resonances. A multiphysics coupled model of the beam-piezoelectric system is proposed based on the nonlinear beam theory of Bernoulli–Euler and the piezoelectric constitutive equations. The discretized model of the system is obtained with the help of the Galerkin weighted residual technique while retaining 32 degrees-of-freedom. Three-dimensional finite element analysis is conducted as well in the static regime to validate the developed model and numerical simulation. It is shown that the response of the system in the nonlinear resonant region is strongly affected by a three-to-one internal resonance.


2011 ◽  
Vol 16 (3) ◽  
pp. 343-364 ◽  
Author(s):  
Ranjit Kumar Upadhyay ◽  
Malay Banerjee ◽  
Rana Parshad ◽  
Sharada Nandan Raw

The main objective of the present paper is to consider the dynamical analysis of a three dimensional prey-predator model within deterministic environment and the influence of environmental driving forces on the dynamics of the model system. For the deterministic model we have obtained the local asymptotic stability criteria of various equilibrium points and derived the condition for the existence of small amplitude periodic solution bifurcating from interior equilibrium point through Hopf bifurcation. We have obtained the parametric domain within which the model system exhibit chaotic oscillation and determined the route to chaos. Finally, we have shown that chaotic oscillation disappears in presence of environmental driving forces which actually affect the deterministic growth rates. These driving forces are unable to drive the system from a regime of deterministic chaos towards a stochastically stable situation. The stochastic stability results are discussed in terms of the stability of first and second order moments. Exhaustive numerical simulations are carried out to validate the analytical findings.


Sign in / Sign up

Export Citation Format

Share Document