scholarly journals Reafference and the origin of the self in early nervous system evolution

2021 ◽  
Vol 376 (1821) ◽  
pp. 20190764 ◽  
Author(s):  
Gáspár Jékely ◽  
Peter Godfrey-Smith ◽  
Fred Keijzer

Discussions of the function of early nervous systems usually focus on a causal flow from sensors to effectors, by which an animal coordinates its actions with exogenous changes in its environment. We propose, instead, that much early sensing was reafferent ; it was responsive to the consequences of the animal's own actions. We distinguish two general categories of reafference—translocational and deformational—and use these to survey the distribution of several often-neglected forms of sensing, including gravity sensing, flow sensing and proprioception. We discuss sensing of these kinds in sponges, ctenophores, placozoans, cnidarians and bilaterians. Reafference is ubiquitous, as ongoing action, especially whole-body motility, will almost inevitably influence the senses. Corollary discharge—a pathway or circuit by which an animal tracks its own actions and their reafferent consequences—is not a necessary feature of reafferent sensing but a later-evolving mechanism. We also argue for the importance of reafferent sensing to the evolution of the body-self , a form of organization that enables an animal to sense and act as a single unit. This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.

2020 ◽  
Author(s):  
Gáspár Jékely ◽  
Peter Godfrey-Smith ◽  
Fred Keijzer

Discussions of the function of early nervous systems usually focus on a causal flow from sensors to effectors, by which an animal coordinates its actions with exogenous changes in its environment. We propose, instead, that much early sensing was reafferent; it was responsive to the consequences of the animal's own actions. We distinguish two general categories of reafference – translocational and deformational – and use these to survey the distribution of several often-neglected forms of sensing, including gravity sensing, flow sensing, and proprioception. We discuss sensing of these kinds in sponges, ctenophores, placozoans, cnidarians and bilaterians. Reafference is ubiquitous, as ongoing action, especially whole-body motility, will almost inevitably influence the senses. Corollary discharge – a pathway or circuit by which an animal tracks its own actions and their reafferent consequences – is not a necessary feature of reafferent sensing but a later- evolving mechanism. We also argue for the importance of reafferent sensing to the evolution of the body-self, a form of organization that enables an animal to sense and act as a single unit.


2019 ◽  
Author(s):  
Jacob M. Musser ◽  
Klaske J. Schippers ◽  
Michael Nickel ◽  
Giulia Mizzon ◽  
Andrea B. Kohn ◽  
...  

AbstractThe evolutionary origin of metazoan cell types such as neurons, muscles, digestive, and immune cells, remains unsolved. Using whole-body single-cell RNA sequencing in a sponge, an animal without nervous system and musculature, we identify 18 distinct cell types comprising four major families. This includes nitric-oxide sensitive contractile cells, digestive cells active in macropinocytosis, and a family of amoeboid-neuroid cells involved in innate immunity. We uncover ‘presynaptic’ genes in an amoeboid-neuroid cell type, and ‘postsynaptic’ genes in digestive choanocytes, suggesting asymmetric and targeted communication. Corroborating this, long neurite-like extensions from neuroid cells directly contact and enwrap choanocyte microvillar collars. Our data indicate a link between neuroid and immune functions in sponges, and suggest that a primordial neuro-immune system cleared intruders and controlled ciliary beating for feeding.


Author(s):  
Ming-Hsin Li ◽  
Han-Chih Chang ◽  
Chun-Fang Feng ◽  
Hung-Wen Yu ◽  
Chyng-Yann Shiue

Background:: Epigenetic dysfunction is implicated in many neurologic, psychiatric and oncologic diseases. Consequently, histone deacetylases (HDACs) inhibitors have been developed as therapeutic and imaging agents for these diseases. However, only a few radiotracers have been developed as HDACs imaging agents for the central nervous system (CNS). We report herein the synthesis and evaluation of [18F]INER-1577-3 ([18F]5) as an HDACs imaging agent for CNS. Methods:: [18F]INER-1577-3 ([18F]5) was synthesized by two methods: one-step (A) and two-step (B) methods. Briefly, radiofluorination of the corresponding precursors (11, 12) with K[18F]/K2.2.2 followed by purifications with HPLC gave ([18F]5). The quality of [18F]INER- 1577-3 synthesized by these methods was verified by HPLC and TLC as compared to an authentic sample. The inhibitions of [18F]INER-1577-3 and related HDACs inhibitors on tumor cells growth were carried out with breast cancer cell line 4T1 and MCF-7. The whole-body and brain uptake of [18F]INER-1577-3 in rats and AD mice were determined using a micro-PET scanner and the data was analyzed using PMOD. Results: : The radiochemical yield of [18F]INER-1577-3 synthesized by these two methods was 1.4 % (Method A) and 8.8% (Method B) (EOB), respectively. The synthesis time was 115 min and 100 min, respectively, from EOB. The inhibition studies showed that INER-1577-3 has a significant inhibitory effect in HDAC6 and HDAC8 but not HDAC2. PET studies in rats and AD mice showed a maximum at about 15 min postinjection for the whole brain of a rat (0.47 ± 0.03 %ID/g), SAMP8 mice (5.63 ± 1.09 %ID/g) and SAMR1 mice (7.23 ± 1.21 %ID/g). Conclusion:: This study showed that INER-1577-3 can inhibit tumor cell growth and is one of a few HDACs inhibitors that can penetrate the blood-brain barrier (BBB) and monitor HDAC activities in AD mice. Thus, [18F]INER-1577-3 may be a potent HDACs imaging agent, especially for CNS.


2020 ◽  
Vol 29 (3) ◽  
pp. 255-260
Author(s):  
Joseph Cesario ◽  
David J. Johnson ◽  
Heather L. Eisthen

A widespread misconception in much of psychology is that (a) as vertebrate animals evolved, “newer” brain structures were added over existing “older” brain structures, and (b) these newer, more complex structures endowed animals with newer and more complex psychological functions, behavioral flexibility, and language. This belief, although widely shared in introductory psychology textbooks, has long been discredited among neurobiologists and stands in contrast to the clear and unanimous agreement on these issues among those studying nervous-system evolution. We bring psychologists up to date on this issue by describing the more accurate model of neural evolution, and we provide examples of how this inaccurate view may have impeded progress in psychology. We urge psychologists to abandon this mistaken view of human brains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Wen ◽  
Nazila Salamat-Miller ◽  
Keethkumar Jain ◽  
Katherine Taylor

AbstractDirect delivery of therapeutic enzymes to the Central Nervous System requires stringent formulation design. Not only should the formulation design consider the delicate balance of existing ions, proteins, and osmolality in the cerebrospinal fluid, it must also provide long term efficacy and stability for the enzyme. One fundamental approach to this predicament is designing formulations with no buffering species. In this study, we report a high concentration, saline-based formulation for a human sulfatase for its delivery into the intrathecal space. A high concentration formulation (≤ 40 mg/mL) was developed through a series of systematic studies that demonstrated the feasibility of a self-buffered formulation for this molecule. The self-buffering capacity phenomenon was found to be a product of both the protein itself and potentially the residual phosphates associated with the protein. To date, the self-buffered formulation for this molecule has been stable for up to 4 years when stored at 5 ± 3 °C, with no changes either in the pH values or other quality attributes of the molecule. The high concentration self-buffered protein formulation was also observed to be stable when exposed to multiple freeze–thaw cycles and was robust during in-use and agitation studies.


2021 ◽  
pp. 1-16
Author(s):  
Alexander Yang Hui Xiang ◽  
Prashanna Khwaounjoo ◽  
Yusuf Ozgur Cakmak

BACKGROUND: Neural circuits allow whole-body yaw rotation to modulate vagal parasympathetic activity, which alters beat-to-beat variation in heart rate. The overall output of spinning direction, as well as vestibular-visual interactions on vagal activity still needs to be investigated. OBJECTIVE: This study investigated direction-dependent effects of visual and natural vestibular stimulation on two autonomic responses: heart rate variability (HRV) and pupil diameter. METHODS: Healthy human male subjects (n = 27) underwent constant whole-body yaw rotation with eyes open and closed in the clockwise (CW) and anticlockwise (ACW) directions, at 90°/s for two minutes. Subjects also viewed the same spinning environments on video in a VR headset. RESULTS: CW spinning significantly decreased parasympathetic vagal activity in all conditions (CW open p = 0.0048, CW closed p = 0.0151, CW VR p = 0.0019,), but not ACW spinning (ACW open p = 0.2068, ACW closed p = 0.7755, ACW VR p = 0.1775,) as indicated by an HRV metric, the root mean square of successive RR interval differences (RMSSD). There were no direction-dependent effects of constant spinning on sympathetic activity inferred through the HRV metrics, stress index (SI), sympathetic nervous system index (SNS index) and pupil diameter. Neuroplasticity in the CW eyes closed and CW VR conditions post stimulation was observed. CONCLUSIONS: Only one direction of yaw spinning, and visual flow caused vagal nerve neuromodulation and neuroplasticity, resulting in an inhibition of parasympathetic activity on the heart, to the same extent in either vestibular or visual stimulation. These results indicate that visual flow in VR can be used as a non-electrical method for vagus nerve inhibition without the need for body motion in the treatment of disorders with vagal overactivity. The findings are also important for VR and spinning chair based autonomic nervous system modulation protocols, and the effects of motion integrated VR.


2016 ◽  
Vol 26 (20) ◽  
pp. R1101-R1108 ◽  
Author(s):  
Irving E. Wang ◽  
Thomas R. Clandinin

Author(s):  
Audrey Rousseaud ◽  
Stephanie Moriceau ◽  
Mariana Ramos-Brossier ◽  
Franck Oury

AbstractReciprocal relationships between organs are essential to maintain whole body homeostasis. An exciting interplay between two apparently unrelated organs, the bone and the brain, has emerged recently. Indeed, it is now well established that the brain is a powerful regulator of skeletal homeostasis via a complex network of numerous players and pathways. In turn, bone via a bone-derived molecule, osteocalcin, appears as an important factor influencing the central nervous system by regulating brain development and several cognitive functions. In this paper we will discuss this complex and intimate relationship, as well as several pathologic conditions that may reinforce their potential interdependence.


2000 ◽  
Vol 86 (3_part_2) ◽  
pp. 1149-1154 ◽  
Author(s):  
Brandy S. Wegner ◽  
Anita M. Hartmann ◽  
C. R. Geist

The purpose of this study was to assess the immediate influence of brief exposure to images taken from print media on the general self-consciousness and body self-consciousness of 67 college women. After viewing photographs of either thin female models or control photographs, the women completed the Self-consciousness Scale and the Body Self-consciousness Questionnaire. Although a was .45, the college women who looked at images of thin female models gave immediate ratings significantly ( p < .001) higher on both general Self-consciousness and Body Self-consciousness than those who looked at control images.


2018 ◽  
Vol 89 (11) ◽  
pp. 2187-2198 ◽  
Author(s):  
Tamaki Mitsuno ◽  
Ayaka Kai

A system for measuring clothing pressure employing a renewed hydrostatic pressure-balancing method was examined using three calibration methods. All methods revealed an almost perfectly linear Y = X relation for the pressure load (X) and the reading of the system (Y). In the application, the distributions of elastic band pressure were examined on 21 planes from head to foot. The preferred elastic band pressures of the leg and arm were significantly higher than those of the neck and abdomen. These results are due to the large presence of the autonomic nervous system at the surfaces of the neck and abdomen. In the area of the abdomen, the preferred elastic band pressure was higher from the mammilla to the shoulder than for the anteroposterior midlines. The development of compression ware must consider appropriate tightening for each body part.


Sign in / Sign up

Export Citation Format

Share Document