scholarly journals The periplasmic chaperone Skp is required for successful Salmonella Typhimurium infection in a murine typhoid model

Microbiology ◽  
2011 ◽  
Vol 157 (3) ◽  
pp. 848-858 ◽  
Author(s):  
Gary Rowley ◽  
Henrieta Skovierova ◽  
Andrew Stevenson ◽  
Bronislava Rezuchova ◽  
Dagmar Homerova ◽  
...  

The alternative sigma factor σ E (rpoE) is essential for survival in vivo of Salmonella Typhimurium but is dispensable during growth in the laboratory. We have been identifying σ E-regulated genes and studying their regulation and function to elucidate their potential role in the severe attenuation of S. Typhimurium rpoE mutants. In this study we identify five promoters that control the rseP, yaeT (bamA), skp region. A confirmed σ E-dependent promoter, yaeTp1, and a second downstream promoter, yaeTp2, are located within the upstream gene rseP and direct expression of the downstream genes. The only known function of RseP is σ E activation, and it is therefore not expected to be essential for S. Typhimurium in vitro. However, it proved impossible to delete the entire rseP gene due to the presence of internal promoters that regulate the essential gene yaeT. We could inactivate rseP by deleting the first third of the gene, leaving the yaeT promoters intact. Like the rpoE mutant, the rseP mutant exhibited severe attenuation in vivo. We were able to delete the entire coding sequence of skp, which encodes a periplasmic chaperone involved in targeting misfolded outer-membrane proteins to the β-barrel assembly machinery. The skp mutant was attenuated in mice after oral and parenteral infection. Virulence could be complemented by providing skp in trans but only by linking it to a heterologous σ E-regulated promoter. The reason the skp mutant is attenuated is currently enigmatic, but we know it is not through increased sensitivity to a variety of RpoE-activating host stresses, such as H2O2, polymyxin B and high temperature, or through altered secretion of effector proteins by either the Salmonella pathogenicity island (SPI)-1 or the SPI-2 type III secretion system.

2020 ◽  
pp. 1-14
Author(s):  
Shelby Shrigley ◽  
Fredrik Nilsson ◽  
Bengt Mattsson ◽  
Alessandro Fiorenzano ◽  
Janitha Mudannayake ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson’s disease (PD) and they provide the option of using the patient’s own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. Objective: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. Methods: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. Results: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. Conclusion: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


Author(s):  
Birte Weber ◽  
Niklas Franz ◽  
Ingo Marzi ◽  
Dirk Henrich ◽  
Liudmila Leppik

AbstractDue to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Rashmita Pradhan ◽  
Phuong A. Ngo ◽  
Luz d. C. Martínez-Sánchez ◽  
Markus F. Neurath ◽  
Rocío López-Posadas

Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3562
Author(s):  
Mitra Nair ◽  
Chelsea Bolyard ◽  
Tae Jin Lee ◽  
Balveen Kaur ◽  
Ji Young Yoo

Brain-specific angiogenesis inhibitor 1 (BAI1/ADGRB1) is an adhesion G protein-coupled receptor that has been found to play key roles in phagocytosis, inflammation, synaptogenesis, the inhibition of angiogenesis, and myoblast fusion. As the name suggests, it is primarily expressed in the brain, with a high expression in the normal adult and developing brain. Additionally, its expression is reduced in brain cancers, such as glioblastoma (GBM) and peripheral cancers, suggesting that BAI1 is a tumor suppressor gene. Several investigators have demonstrated that the restoration of BAI1 expression in cancer cells results in reduced tumor growth and angiogenesis. Its expression has also been shown to be inversely correlated with tumor progression, neovascularization, and peri-tumoral brain edema. One method of restoring BAI1 expression is by using oncolytic virus (OV) therapy, a strategy which has been tested in various tumor models. Oncolytic herpes simplex viruses engineered to express the secreted fragment of BAI1, called Vasculostatin (Vstat120), have shown potent anti-tumor and anti-angiogenic effects in multiple tumor models. Combining Vstat120-expressing oHSVs with other chemotherapeutic agents has also shown to increase the overall anti-tumor efficacy in both in vitro and in vivo models. In the current review, we describe the structure and function of BAI1 and summarize its application in the context of cancer treatment.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Raghubendra Singh Dagur ◽  
Moses New-Aaron ◽  
Murali Ganesan ◽  
Weimin Wang ◽  
Svetlana Romanova ◽  
...  

Background: Alcohol abuse is common in people living with HIV-1 and dramaticallyenhances the severity of HIV-induced liver damage by inducing oxidative stress and lysosomaldysfunction in the liver cells. We hypothesize that the increased release of extracellular vesicles(EVs) in hepatocytes and liver humanized mouse model is linked to lysosome dysfunction. Methods:The study was performed on primary human hepatocytes and human hepatoma RLWXP-GFP (Huh7.5 cells stably transfected with CYP2E1 and XPack-GFP) cells and validated on ethanol-fed liverhumanizedfumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chainknockout (FRG-KO) mice. Cells and mice were infected with HIV-1ADA virus. Results: We observedan increase in the secretion of EVs associated with a decrease in lysosomal activity and expressionof lysosomal-associated membrane protein 1. Next-generation RNA sequencing of primary humanhepatocytes revealed 63 differentially expressed genes, with 13 downregulated and 50 upregulatedgenes in the alcohol–HIV-treated group. Upstream regulator analysis of differentially expressedgenes through Ingenuity Pathway Analysis identified transcriptional regulators affecting downstreamgenes associated with increased oxidative stress, lysosomal associated disease, and function andEVs biogenesis. Our in vitro findings were corroborated by in vivo studies on human hepatocytetransplantedhumanized mice, indicating that intensive EVs’ generation by human hepatocytes andtheir secretion to serum was associated with increased oxidative stress and reduction in lysosomalactivities triggered by HIV infection and ethanol diet. Conclusion: HIV-and-ethanol-metabolisminducedEVs release is tightly controlled by lysosome status in hepatocytes and participates in thedevelopment of double-insult-induced liver injury.


2002 ◽  
Vol 364 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Gareth J.O. EVANS ◽  
Alan MORGAN

The secretory vesicle cysteine string proteins (CSPs) are members of the DnaJ family of chaperones, and function at late stages of Ca2+-regulated exocytosis by an unknown mechanism. To determine novel binding partners of CSPs, we employed a pull-down strategy from purified rat brain membrane or cytosolic proteins using recombinant hexahistidine-tagged (His6-)CSP. Western blotting of the CSP-binding proteins identified synaptotagmin I to be a putative binding partner. Furthermore, pull-down assays using cAMP-dependent protein kinase (PKA)-phosphorylated CSP recovered significantly less synaptotagmin. Complexes containing CSP and synaptotagmin were immunoprecipitated from rat brain membranes, further suggesting that these proteins interact in vivo. Binding assays in vitro using recombinant proteins confirmed a direct interaction between the two proteins and demonstrated that the PKA-phosphorylated form of CSP binds synaptotagmin with approximately an order of magnitude lower affinity than the non-phosphorylated form. Genetic studies have implicated each of these proteins in the Ca2+-dependency of exocytosis and, since CSP does not bind Ca2+, this novel interaction might explain the Ca2+-dependent actions of CSP.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


2011 ◽  
Vol 286 (22) ◽  
pp. 19229-19236 ◽  
Author(s):  
Laura A. Lindsey-Boltz ◽  
Aziz Sancar

The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.


Sign in / Sign up

Export Citation Format

Share Document