TolA mediates the differential detergent resistance pattern between the Salmonella enterica subsp. enterica serovars Typhi and Typhimurium

Microbiology ◽  
2011 ◽  
Vol 157 (5) ◽  
pp. 1402-1415 ◽  
Author(s):  
Amit Lahiri ◽  
T. K. Ananthalakshmi ◽  
Arvindhan G. Nagarajan ◽  
Seemun Ray ◽  
Dipshikha Chakravortty

The tol–pal genes are essential for maintaining the outer membrane integrity and detergent resistance in various Gram-negative bacteria, including Salmonella. The role of TolA has been well established for the bile resistance of Salmonella enterica subsp. enterica serovar Typhimurium. We compared the bile resistance pattern between the S. enterica serovars Typhi and Typhimurium and observed that Typhi is more resistant to bile-mediated damage. A closer look revealed a significant difference in the TolA sequence between the two serovars which contributes to the differential detergent resistance. The tolA knockout of both the serovars behaves completely differently in terms of membrane organization and morphology. The role of the Pal proteins and difference in LPS organization between the two serovars were verified and were found to have no direct connection with the altered bile resistance. In normal Luria broth (LB), S. Typhi ΔtolA is filamentous while S. Typhimurium ΔtolA grows as single cells, similar to the wild-type. In low osmolarity LB, however, S. Typhimurium ΔtolA started chaining and S. Typhi ΔtolA showed no growth. Further investigation revealed that the chaining phenomenon observed was the result of failure of the outer membrane to separate in the dividing cells. Taken together, the results substantiate the evolution of a shorter TolA in S. Typhi to counteract high bile concentrations, at the cost of lower osmotic tolerance.

2012 ◽  
Vol 80 (7) ◽  
pp. 2454-2463 ◽  
Author(s):  
Stephen J. Forbes ◽  
Daniel Martinelli ◽  
Chyongere Hsieh ◽  
Jeffrey G. Ault ◽  
Michael Marko ◽  
...  

ABSTRACTInvasion of intestinal epithelial cells bySalmonella entericaserovar Typhimurium is an energetically demanding process, involving the transfer of effector proteins from invading bacteria into host cells via a specialized organelle known as theSalmonellapathogenicity island 1 (SPI-1) type 3 secretion system (T3SS). By a mechanism that remains poorly understood, entry ofS. Typhimurium into epithelial cells is inhibited by Sal4, a monoclonal, polymeric IgA antibody that binds an immunodominant epitope within the O-antigen (O-Ag) component of lipopolysaccharide. In this study, we investigated how the binding of Sal4 to the surface ofS. Typhimurium influences T3SS activity, bacterial energetics, and outer membrane integrity. We found that Sal4 treatment impaired T3SS-mediated translocon formation and attenuated the delivery of tagged effector proteins into epithelial cells. Sal4 treatment coincided with a partial reduction in membrane energetics and intracellular ATP levels, possibly explaining the impairment in T3SS activity. Sal4's effects on bacterial secretion and energetics occurred concurrently with an increase in O-Ag levels in culture supernatants, alterations in outer membrane permeability, and changes in surface ultrastructure, as revealed by transmission electron microscopy and cryo-electron microscopy. We propose that Sal4, by virtue of its ability to bind and cross-link the O-Ag, induces a form of outer membrane stress that compromises the integrity of theS. Typhimurium cell envelope and temporarily renders the bacterium avirulent.


2010 ◽  
Vol 76 (8) ◽  
pp. 2600-2606 ◽  
Author(s):  
Barbara Roeder ◽  
Martin Wagner ◽  
Peter Rossmanith

ABSTRACT The aim of this study was to observe growth of isolated single bacterial cells in the absence of growth factors and intercellular contact. In order to exclude stochastic uncertainties induced by dilution series, a new micromanipulation method was developed to ensure explicit results under visual control. This was performed with particular care for production of single prokaryotic cells and subsequent investigation of their autonomous growth. Over 450 single isolated Listeria monocytogenes and Salmonella enterica subsp. enterica serovar Typhimurium cells in lag, log, and stationary growth phases were investigated by this method, which included thoroughly washing the cells. The proportion of living cells within the initial cultures was compared to the proportion of positive samples after enrichment of the separated single cells. This resulted in P values of ≥0.05 using the chi-square test for statistical analysis, indicating no significant difference, and clearly demonstrates reproduction of isolated single bacterial cells without the need for growth factors or intercellular contact. Ease of handling of the apparatus and good performance of the cleaning procedures were achieved, as was validation of the method, demonstrating its suitability for routine laboratory use.


2008 ◽  
Vol 190 (9) ◽  
pp. 3155-3160 ◽  
Author(s):  
Alena Sebkova ◽  
Daniela Karasova ◽  
Magdalena Crhanova ◽  
Eva Budinska ◽  
Ivan Rychlik

ABSTRACT In this study we characterized aro mutants of Salmonella enterica serovars Enteritidis and Typhimurium, which are frequently used as live oral vaccines. We found that the aroA, aroD, and aroC mutants were sensitive to blood serum, albumen, EDTA, and ovotransferrin, and this defect could be complemented by an appropriate aro gene cloned in a plasmid. Subsequent microarray analysis of gene expression in the aroD mutant in serovar Typhimurium indicated that the reason for this sensitivity might be the upregulation of murA. To confirm this, we artificially overexpressed murA from a multicopy plasmid, and this overexpression caused sensitivity of the strain to albumen and EDTA but not to serum and ovotransferrin. We concluded that attenuation of aro mutants is caused not only by their inability to synthesize aromatic metabolites but also by their defect in cell wall and outer membrane functions associated with decreased resistance to components of innate immune response.


2009 ◽  
Vol 191 (11) ◽  
pp. 3615-3622 ◽  
Author(s):  
Ana I. Prieto ◽  
Sara B. Hernández ◽  
Ignacio Cota ◽  
M. Graciela Pucciarelli ◽  
Yuri Orlov ◽  
...  

ABSTRACT A genetic screen for suppressors of bile sensitivity in DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium yielded insertions in an uncharacterized locus homologous to the Escherichia coli asmA gene. Disruption of asmA suppressed bile sensitivity also in phoP and wec mutants of S. enterica and increased the MIC of sodium deoxycholate for the parental strain ATCC 14028. Increased levels of marA mRNA were found in asmA, asmA dam, asmA phoP, and asmA wec strains of S. enterica, suggesting that lack of AsmA activates expression of the marRAB operon. Hence, asmA mutations may enhance bile resistance by inducing gene expression changes in the marRAB-controlled Mar regulon. In silico analysis of AsmA structure predicted the existence of one transmembrane domain. Biochemical analysis of subcellular fractions revealed that the asmA gene of S. enterica encodes a protein of ∼70 kDa located in the outer membrane. Because AsmA is unrelated to known transport and/or efflux systems, we propose that activation of marRAB in asmA mutants may be a consequence of envelope reorganization. Competitive infection of BALB/c mice with asmA + and asmA isogenic strains indicated that lack of AsmA attenuates Salmonella virulence by the oral route but not by the intraperitoneal route. Furthermore, asmA mutants showed a reduced ability to invade epithelial cells in vitro.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simone C. Barbosa ◽  
Thatyane M. Nobre ◽  
Diogo Volpati ◽  
Eduardo M. Cilli ◽  
Daniel S. Correa ◽  
...  

2003 ◽  
Vol 71 (9) ◽  
pp. 4873-4882 ◽  
Author(s):  
Qian Li ◽  
Bobby J. Cherayil

ABSTRACT Toll-like receptors (TLRs) play an important role in the innate immune response, particularly in the initial interaction between the infecting microorganism and phagocytic cells, such as macrophages. We investigated the role of TLR4 during infection of primary murine peritoneal macrophages with Salmonella enterica serovar Typhimurium. We found that macrophages from the C3H/HeJ mouse strain, which carries a functionally inactive Tlr4 gene, exhibit marked impairment of tumor necrosis factor alpha (TNF-α) secretion in response to S. enterica serovar Typhimurium infection. However, activation of extracellular growth factor-regulated kinase and NF-κB signaling pathways was relatively unaffected, as was increased expression of TNF-α mRNA. Furthermore, macrophage tolerance, which is associated with increased expression of the NF-κB p50 and p52 subunits, was induced by S. enterica serovar Typhimurium even in the absence of functional TLR4. These results indicate that during infection of macrophages by S. enterica serovar Typhimurium, TLR4 signals are required at a posttranscriptional step to maximize secretion of TNF-α. Signals delivered by pattern recognition receptors other than TLR4 are sufficient for the increased expression of the TNF-α transcript and at least some genes associated with macrophage tolerance.


2018 ◽  
Vol 84 (8) ◽  
pp. e02567-17 ◽  
Author(s):  
H. Bart van den Berg van Saparoea ◽  
Diane Houben ◽  
Marien I. de Jonge ◽  
Wouter S. P. Jong ◽  
Joen Luirink

ABSTRACT The Escherichia coli virulence factor hemoglobin protease (Hbp) has been engineered into a surface display system that can be expressed to high density on live E. coli and Salmonella enterica serovar Typhimurium cells or derived outer membrane vesicles (OMVs). Multiple antigenic sequences can be genetically fused into the Hbp core structure for optimal exposure to the immune system. Although the Hbp display platform is relatively tolerant, increasing the number, size, and complexity of integrated sequences generally lowers the expression of the fused constructs and limits the density of display. This is due to the intricate mechanism of Hbp secretion across the outer membrane and the efficient quality control of translocation-incompetent chimeric Hbp molecules in the periplasm. To address this shortcoming, we explored the coupling of purified proteins to the Hbp carrier after its translocation across the outer membrane using the recently developed SpyTag/SpyCatcher protein ligation system. As expected, fusion of the small SpyTag to Hbp did not hamper display on OMVs. Subsequent addition of purified proteins fused to the SpyCatcher domain resulted in efficient covalent coupling to Hbp-SpyTag. Using in addition the orthogonal SnoopTag/SnoopCatcher system, multiple antigen modules could be coupled to Hbp in a sequential ligation strategy. Not only antigens proved suitable for Spy-mediated ligation but also nanobodies. Addition of this functionality to the platform might allow the targeting of live bacterial or OMV vaccines to certain tissues or immune cells to tailor immune responses.IMPORTANCE Outer membrane vesicles (OMVs) derived from Gram-negative bacteria attract increasing interest in the development of vaccines and therapeutic agents. We aim to construct a semisynthetic OMV platform for recombinant antigen presentation on OMVs derived from attenuated Salmonella enterica serovar Typhimurium cells displaying an adapted Escherichia coli autotransporter, Hbp, at the surface. Although this autotransporter accepts substantial modifications, its capacity with respect to the number, size, and structural complexity of the antigens genetically fused to the Hbp carrier is restricted. Here we describe the application of SpyCatcher/SpyTag protein ligation technology to enzymatically link antigens to Hbp present at high density in OMVs. Protein ligation was apparently unobstructed by the membrane environment and allowed a high surface density of coupled antigens, a property we have shown to be important for vaccine efficacy. The OMV coupling procedure appears versatile and robust, allowing fast production of experimental vaccines and therapeutic agents through a modular plug-and-display procedure.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 668
Author(s):  
Zabdiel Alvarado-Martinez ◽  
Paulina Bravo ◽  
Nana-Frekua Kennedy ◽  
Mayur Krishna ◽  
Syed Hussain ◽  
...  

Salmonella enterica serovar Typhimurium (ST) remains a major infectious agent in the USA, with an increasing antibiotic resistance pattern, which requires the development of novel antimicrobials capable of controlling ST. Polyphenolic compounds found in plant extracts are strong candidates as alternative antimicrobials, particularly phenolic acids such as gallic acid (GA), protocatechuic acid (PA) and vanillic acid (VA). This study evaluates the effectiveness of these compounds in inhibiting ST growth while determining changes to the outer membrane through fluorescent dye uptake and scanning electron microscopy (SEM), in addition to measuring alterations to virulence genes with qRT-PCR. Results showed antimicrobial potential for all compounds, significantly inhibiting the detectable growth of ST. Fluorescent spectrophotometry and microscopy detected an increase in relative fluorescent intensity (RFI) and red-colored bacteria over time, suggesting membrane permeabilization. SEM revealed severe morphological defects at the polar ends of bacteria treated with GA and PA, while VA-treated bacteria were found to be mid-division. Relative gene expression showed significant downregulation in master regulator hilA and invH after GA and PA treatments, while fliC was upregulated in VA. Results suggest that GA, PA and VA have antimicrobial potential that warrants further research into their mechanism of action and the interactions that lead to ST death.


2004 ◽  
Vol 50 (9) ◽  
pp. 719-727 ◽  
Author(s):  
Bochiwe Hara-Kaonga ◽  
Thomas G Pistole

Conflicting reports exist regarding the role of porins OmpC and OmpD in infections due to Salmonella enterica serovar Typhimurium. This study investigated the role of these porins in bacterial adherence to human macrophages and intestinal epithelial cells. ompC and ompD mutant strains were created by transposon mutagenesis using P22-mediated transduction of Tn10 and Tn5 insertions, respectively, into wild-type strain 14028. Fluorescein-labeled wild-type and mutant bacteria were incubated with host cells at various bacteria to cell ratios for 1 h at 37 °C and analyzed by flow cytometry. The mean fluorescence intensity of cells with associated wild-type and mutant bacteria was used to estimate the number of bacteria bound per host cell. Adherence was also measured by fluorescence microscopy. Neither assay showed a significant difference in binding of the ompC mutant and wild-type strains to the human cells. In contrast, the ompD mutant exhibited lowered binding to both cell types. Our findings suggest that OmpD but not OmpC is involved in the recognition of Salmonella serovar Typhimurium by human macrophages and intestinal epithelial cells.Key words: Salmonella, adherence, porins, intestinal epithelial cells, macrophage.


Sign in / Sign up

Export Citation Format

Share Document