scholarly journals Evaluation of drugs for treatment of prion infections of the central nervous system

2008 ◽  
Vol 89 (2) ◽  
pp. 594-597 ◽  
Author(s):  
Constanze Riemer ◽  
Michael Burwinkel ◽  
Anja Schwarz ◽  
Sandra Gültner ◽  
Simon W. F. Mok ◽  
...  

Prion diseases are fatal and at present there are neither cures nor therapies available to delay disease onset or progression in humans. Inspired in part by therapeutic approaches in the fields of Alzheimer's disease and amyotrophic lateral sclerosis, we tested five different drugs, which are known to efficiently pass through the blood–brain barrier, in a murine prion model. Groups of intracerebrally prion-challenged mice were treated with the drugs curcumin, dapsone, ibuprofen, memantine and minocycline. Treatment with antibiotics dapsone and minocycline had no therapeutic benefit. Ibuprofen-treated mice showed severe adverse effects, which prevented assessment of therapeutic efficacy. Mice treated with low- but not high-dose curcumin and mice treated with memantine survived infections significantly longer than untreated controls (P<0.01). These results encourage further research efforts to improve the therapeutic effect of these drugs.

Author(s):  
Francisco J Gil-Bea ◽  
Garazi Aldanondo ◽  
Haizpea Lasa-Fernández ◽  
Adolfo López de Munain ◽  
Ainara Vallejo-Illarramendi

Amyotrophic lateral sclerosis (ALS) is a severe neuromuscular disease characterised by a progressive loss of motor neurons that usually results in paralysis and death within 2 to 5 years after disease onset. The pathophysiological mechanisms involved in ALS remain largely unknown and to date there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of copper homeostasis in the central nervous system is a crucial underlying event in motor neuron degeneration and ALS pathophysiology. We also review and discuss novel approaches seeking to target copper delivery to treat ALS. These novel approaches may be clinically relevant not only for ALS but also for other neurological disorders with abnormal copper homeostasis, such as Parkinson's, Huntington's and Prion diseases.


2020 ◽  
Vol 20 (13) ◽  
pp. 1142-1153 ◽  
Author(s):  
Sreyashi Chandra ◽  
Md. Tanjim Alam ◽  
Jhilik Dey ◽  
Baby C. Pulikkaparambil Sasidharan ◽  
Upasana Ray ◽  
...  

Background: The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington’s disease (HD). Objective: We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. Methods: In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. Results: In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. Conclusion: We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.


2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Oihane Pikatza-Menoio ◽  
Amaia Elicegui ◽  
Xabier Bengoetxea ◽  
Neia Naldaiz-Gastesi ◽  
Adolfo López de Munain ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Shofiul Azam ◽  
Md. Ezazul Haque ◽  
In-Su Kim ◽  
Dong-Kug Choi

Microglia are brain-dwelling macrophages and major parts of the neuroimmune system that broadly contribute to brain development, homeostasis, ageing and injury repair in the central nervous system (CNS). Apart from other brain macrophages, they have the ability to constantly sense changes in the brain’s microenvironment, functioning as housekeepers for neuronal well-being and providing neuroprotection in normal physiology. Microglia use a set of genes for these functions that involve proinflammatory cytokines. In response to specific stimuli, they release these proinflammatory cytokines, which can damage and kill neurons via neuroinflammation. However, alterations in microglial functioning are a common pathophysiology in age-related neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s and prion diseases, as well as amyotrophic lateral sclerosis, frontotemporal dementia and chronic traumatic encephalopathy. When their sentinel or housekeeping functions are severely disrupted, they aggravate neuropathological conditions by overstimulating their defensive function and through neuroinflammation. Several pathways are involved in microglial functioning, including the Trem2, Cx3cr1 and progranulin pathways, which keep the microglial inflammatory response under control and promote clearance of injurious stimuli. Over time, an imbalance in this system leads to protective microglia becoming detrimental, initiating or exacerbating neurodegeneration. Correcting such imbalances might be a potential mode of therapeutic intervention in neurodegenerative diseases.


Author(s):  
Margarida Beatriz ◽  
Rita Vilaça ◽  
Carla Lopes

Extracellular vesicles (EVs) are nano-sized membrane-enclosed particles released by cells that participate in intercellular communication through the transfer of biologic material. EVs include exosomes that are small vesicles that were initially associated with the disposal of cellular garbage; however, recent findings point toward a function as natural carriers of a wide variety of genetic material and proteins. Indeed, exosomes are vesicle mediators of intercellular communication and maintenance of cellular homeostasis. The role of exosomes in health and age-associated diseases is far from being understood, but recent evidence implicates exosomes as causative players in the spread of neurodegenerative diseases. Cells from the central nervous system (CNS) use exosomes as a strategy not only to eliminate membranes, toxic proteins, and RNA species but also to mediate short and long cell-to-cell communication as carriers of important messengers and signals. The accumulation of protein aggregates is a common pathological hallmark in many neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. Protein aggregates can be removed and delivered to degradation by the endo-lysosomal pathway or can be incorporated in multivesicular bodies (MVBs) that are further released to the extracellular space as exosomes. Because exosome transport damaged cellular material, this eventually contributes to the spread of pathological misfolded proteins within the brain, thus promoting the neurodegeneration process. In this review, we focus on the role of exosomes in CNS homeostasis, their possible contribution to the development of neurodegenerative diseases, the usefulness of exosome cargo as biomarkers of disease, and the potential benefits of plasma circulating CNS-derived exosomes.


2020 ◽  
Vol 21 (8) ◽  
pp. 776-780 ◽  
Author(s):  
Snežana Spasić ◽  
Aleksandra Nikolić-Kokić ◽  
Srđan Miletić ◽  
Zorana Oreščanin-Dušić ◽  
Mihajlo B. Spasić ◽  
...  

Radicava™ (Edaravone) was approved the Food and Drug Administration (FDA) as a new treatment for amyotrophic lateral sclerosis (ALS). Edaravone is a synthetic antioxidant that specifically targets oxidative damage interacting with lipid radicals in the cell. In ALS disease the multiple cell types are involved in devastating loss of motor neurons. Mutations and biochemical changes in various cell types jointly contribute to motor neuron death, disease onset, and disease progression. The overall mechanism of neurodegeneration in ALS is still not completely understood. Dying motor neurons have been reported to exhibit features of apoptosis. However, non-apoptotic features of dying motor neurons have also been reported such as ferroptosis. The role of Edaravone in the prevention of ferroptosis in parallel with other therapeutic approaches to ALS therapy is discussed.


1998 ◽  
Vol 44 (2) ◽  
pp. 293-293 ◽  
Author(s):  
Dick Jaarsma ◽  
Henk-Jan Guchelaar ◽  
Elize Haasdijk ◽  
J. M. B. Vianney de Jong ◽  
Jan C. Holstege

2021 ◽  
Vol 12 ◽  
Author(s):  
Virginia Meca-Lallana ◽  
Leticia Berenguer-Ruiz ◽  
Joan Carreres-Polo ◽  
Sara Eichau-Madueño ◽  
Jaime Ferrer-Lozano ◽  
...  

Multiple sclerosis (MS) is primarily an inflammatory and degenerative disease of the central nervous system, triggered by unknown environmental factors in patients with predisposing genetic risk profiles. The prevention of neurological disability is one of the essential goals to be achieved in a patient with MS. However, the pathogenic mechanisms driving the progressive phase of the disease remain unknown. It was described that the pathophysiological mechanisms associated with disease progression are present from disease onset. In daily practice, there is a lack of clinical, radiological, or biological markers that favor an early detection of the disease's progression. Different definitions of disability progression were used in clinical trials. According to the most descriptive, progression was defined as a minimum increase in the Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 from a baseline level of 0, 1.0–5.0, and 5.5, respectively. Nevertheless, the EDSS is not the most sensitive scale to assess progression, and there is no consensus regarding any specific diagnostic criteria for disability progression. This review document discusses the current pathophysiological concepts associated with MS progression, the different measurement strategies, the biomarkers associated with disability progression, and the available pharmacologic therapeutic approaches.


2021 ◽  
Vol 22 (9) ◽  
pp. 4630
Author(s):  
Agnieszka Kulczyńska-Przybik ◽  
Piotr Mroczko ◽  
Maciej Dulewicz ◽  
Barbara Mroczko

Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Dorit Trudler ◽  
Dorit Farfara ◽  
Dan Frenkel

Toll-like receptors (TLRs) are known to be expressed by innate immune response cells and to play a critical role in their activation against foreign pathogens. It was recently suggested that TLRs have an important role in the crosstalk between neurons and glial cells in the central nervous system (CNS). TLR signaling was reported to be associated with a yin-yang effect in the CNS. While TLR signaling was linked to neurogenesis, it was also found to be involved in the pathogenesis of neurodegenerative diseases. This paper will focus on TLR signaling in glial cells in neurodegenerative diseases such as Alzheimer's disease, prion diseases, amyotrophic lateral sclerosis, and Parkinson's disease. Understanding the pattern of TLR signaling in the glial cells may lead to the identification of new targets for therapeutic application.


Sign in / Sign up

Export Citation Format

Share Document