scholarly journals Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona

2016 ◽  
Author(s):  
Shashank Gandhi ◽  
Maximilian Haeussler ◽  
Florian Razy-Krajka ◽  
Lionel Christiaen ◽  
Alberto Stolfi

AbstractThe CRISPR/Cas9 system has emerged as an important tool for various genome engineering applications. A current obstacle to high throughput applications of CRISPR/Cas9 is the imprecise prediction of highly active single guide. RNAs (sgRNAs). We previously implemented the CRISPR/Cas9 system to induce tissue-specific mutations in the tunicate Ciona. In the present study, we designed and tested 83 single guide RNA (sgRNA) vectors targeting 23 genes expressed in the cardiopharyngeal progenitors and surrounding tissues of Ciona embryo. Using high-throughput sequencing of mutagenized alleles, we identified guide sequences that correlate with sgRNA mutagenesis activity and used this information for the rational design of all possible sgRNAs targeting the Ciona transcriptome. We also describe a one-step cloning-free protocol for the assembly of sgRNA expression cassettes. These cassettes can be directly electroporated as unpurified PCR products into Ciona embryos for sgRNA expression in vivo, resulting in high frequency of CRISPR/Cas9-mediated mutagenesis in somatic cells of electroporated embryos.We found a strong correlation between the frequency of an Ebf loss-of-function phenotype and the mutagenesis efficacies of individual Ebf-targeting sgRNAs tested using this method. We anticipate that our approach can be scaled up to systematically design and deliver highly efficient sgRNAs for the tissue-specific investigation of gene functions in Ciona.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245454
Author(s):  
Cristin Chon ◽  
Grace Chon ◽  
Yurika Matsui ◽  
Huiqing Zeng ◽  
Zhi-Chun Lai ◽  
...  

Genome association studies in human and genetic studies in mouse implicated members of the transmembrane protein 132 (TMEM132) family in multiple conditions including panic disorder, hearing loss, limb and kidney malformation. However, the presence of five TMEM132 paralogs in mammalian genomes makes it extremely challenging to reveal the full requirement for these proteins in vivo. In contrast, there is only one TMEM132 homolog, detonator (dtn), in the genome of fruit fly Drosophila melanogaster, enabling straightforward research into its in vivo function. In the current study, we generate multiple loss-of-function dtn mutant fly strains through a polycistronic tRNA-gRNA approach, and show that most embryos lacking both maternal and paternal dtn fail to hatch into larvae, indicating an essential role of dtn in Drosophila reproduction.


Author(s):  
gancheng wang ◽  
dan zhu ◽  
juan li ◽  
junyi wang ◽  
jianzhong xi

Background: CRISPR-cpf1 is a single RNA-guided endonuclease system, becoming a promising tool in both prokaryotic and eukaryotic genome engineering. The editing efficiency of Cpf1 based engineering still requires improvements. However, limited information regarding the relationship between guide RNA sequence and on-target activity is available. To address these challenges, we developed a screening platform based on the association of Acidaminococcus sp. Cpf1(AsCpf1) DNA cleavage with cellular lethality. Major results: In total, we measured the activities of 12,544 guide RNAs, and observed a substantial variation of the editing efficiency depending on the design of the sequence. Based on this large-scale dataset, we designed and implemented a comprehensive computational model to predict activities of guide RNAs. Through comparison using simulated and experimental data, our approach outperformed existing algorithms, enabling selection of efficient guide RNAs. Conclusions: We refine on-target design rules and isolate the important sequence features that contribute to DNA cleavage, that is, AH dimers at position1-8 of protospacer promoting Cas12a activity while TK, GB dimer playing an inhibitory role. We validate guide RNA affinities designed by our optimized rules in both E.coli and 293T cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


2021 ◽  
Author(s):  
Zi-Jian Deng ◽  
Dong-Wen Chen ◽  
Xi-Jie Chen ◽  
Jia-Ming Fang ◽  
Liang Xv ◽  
...  

Abstract Background: Gastric cancer is the fourth most common malignant disease. Both CDK10 and long noncoding RNAs (lncRNAs) have been found to exert biological functions in multiple cancers. However, it is still unclear whether CDK10 represses tumor progression in gastric cancer by reducing potential targeting lncRNAs.Methods: The functions of CDK10 and lncRNA-C5ORF42-5 in proliferation, invasion and migration were assessed by MTS assays, colony formation assays, cell cycle and apoptosis assays, Transwell assays, wound healing assays and animal experiments. We used high-throughput sequencing to confirm the existence of lncRNA-C5ORF42-5 and quantitative real-time PCR was used to evaluate lncRNA expression. Then, with RNA-seq sequencing as well as GO function and KEGG enrichment analysis, we identified the signaling pathways in which lncRNA-C5ORF42-5 was involved in gastric cancer. Finally, western blotting was used to identify the genes regulated by lncRNA-C5ORF42-5.Results: Our results showed that CDK10 is expressed at relatively low levels in gastric cancer cell lines and inhibits the progression of gastric cancer cells both in vitro and in vivo. Next, based on high-throughput sequencing, we identified a novel lncRNA, lncRNA-C5ORF42-5, in the stable CDK10-overexpressing cell line compared with the CDK-knockdown cell line and their controls. Additionally, we confirmed that lncRNA-C5ORF42-5 acts as an oncogene to promote metastasis in gastric cancer in vitro and in vivo. We then ascertained that lncRNA-C5ORF42-5 is a major contributor to the function of CDK10 in gastric cancer metastasis by upregulating lncRNA-C5ORF42-5 to reverse the effects of CDK10 overexpression. Finally, we explored the mechanism by which lncRNA-C5ORF42-5 overexpression affects gastric cancer cells to elucidate whether lncRNA-C5ORF42-5 may increase the activity of the SMAD pathway of BMP signaling and promote the expression of EMT-related proteins, such as E-cadherin. Additionally, overexpression of lncRNA-C5ORF42-5 affected the phosphorylation levels of AKT and ERK.Conclusion: Our findings suggest that CDK10 overexpression represses gastric cancer tumor progression by reducing lncRNA-C5ORF42-5 and hindering activation of the related proteins in metastatic signaling pathways, which provides new insight into developing effective therapeutic strategies in the treatment of metastatic gastric cancer.


2018 ◽  
Author(s):  
Indu Warrier ◽  
Nikhil Ram-Mohan ◽  
Zeyu Zhu ◽  
Ariana Hazery ◽  
Michelle M Meyer ◽  
...  

AbstractEfficient and highly organized transcription initiation and termination is fundamental to an organism’s ability to survive, proliferate, and quickly respond to its environment. Over the last decade, our simplistic outlook of bacterial transcriptional regulation and architecture has evolved to include stimulus-responsive regulation by untranslated RNA and the formation of alternate transcriptional units. In this study, we map the transcriptional landscape of the bacterial pathogen Streptococcus pneumoniae by applying a combination of high-throughput RNA-sequencing techniques. Our study reveals a complex transcriptome wherein environment-respondent alternate transcriptional units are observed within operons stemming from internal transcription start sites (TSS) and transcription terminators (TTS) suggesting that more fine-tuning of regulation occurs than previously thought. Additionally, we identify many putative cis-regulatory RNA elements and riboswitches within 5’-untranslated regions (5’-UTR) of genes. By integrating TSSs and TTSs with independently collected RNA-Seq datasets from a variety of conditions, we establish the response of these regulators to changes in growth conditions and validate several of them. Furthermore, to determine the importance of ribo-regulation by 5’-UTR elements for in vivo virulence, we show that the pyrR regulatory element is essential for survival, successful colonization and infection in mice suggesting that such RNA elements are potential drug targets. Importantly, we show that our approach of combining high-throughput sequencing with in vivo experiments can reconstruct a global understanding of regulation, but also pave the way for discovery of compounds that target (ribo-) regulators to mitigate virulence and antibiotic resistance.


Gut ◽  
2015 ◽  
Vol 66 (3) ◽  
pp. 454-463 ◽  
Author(s):  
Daniele Mennonna ◽  
Cristina Maccalli ◽  
Michele C Romano ◽  
Claudio Garavaglia ◽  
Filippo Capocefalo ◽  
...  

ObjectivePatient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies.DesignWe undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions.ResultsSeveral unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+and CD4+T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo.ConclusionsThese results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 935
Author(s):  
Sarah Maxel ◽  
Linyue Zhang ◽  
Edward King ◽  
Ana Paula Acosta ◽  
Ray Luo ◽  
...  

Cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871 is characterized as having wide substrate versatility for the biooxidation of (cyclic) ketones into esters and lactones with high stereospecificity. Despite industrial potential, CHMO usage is restricted by poor thermostability. Limited high-throughput screening tools and challenges in rationally engineering thermostability have impeded CHMO engineering efforts. We demonstrate the application of an aerobic, high-throughput growth selection platform in Escherichia coli (strain MX203) for the discovery of thermostability enhancing mutations for CHMO. The selection employs growth for the easy readout of CHMO activity in vivo, by requiring nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes to restore cellular redox balance. In the presence of the native substrate cyclohexanone, variant CHMO GV (A245G-A288V) was discovered from a random mutagenesis library screened at 42 °C. This variant retained native activity, exhibited ~4.4-fold improvement in residual activity after 30 °C incubation, and demonstrated ~5-fold higher cyclohexanone conversion at 37 °C compared to the wild type. Molecular modeling indicates that CHMO GV experiences more favorable residue packing and supports additional backbone hydrogen bonding. Further rational design resulted in CHMO A245G-A288V-T415C with improved thermostability at 45 °C. Our platform for oxygenase evolution enabled the rapid engineering of protein stability critical for industrial scalability.


2019 ◽  
Vol 48 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Celia Blanco ◽  
Evan Janzen ◽  
Abe Pressman ◽  
Ranajay Saha ◽  
Irene A. Chen

The function of fitness (or molecular activity) in the space of all possible sequences is known as the fitness landscape. Evolution is a random walk on the fitness landscape, with a bias toward climbing hills. Mapping the topography of real fitness landscapes is fundamental to understanding evolution, but previous efforts were hampered by the difficulty of obtaining large, quantitative data sets. The accessibility of high-throughput sequencing (HTS) has transformed this study, enabling large-scale enumeration of fitness for many mutants and even complete sequence spaces in some cases. We review the progress of high-throughput studies in mapping molecular fitness landscapes, both in vitro and in vivo, as well as opportunities for future research. Such studies are rapidly growing in number. HTS is expected to have a profound effect on the understanding of real molecular fitness landscapes.


2013 ◽  
Vol 81 (9) ◽  
pp. 3068-3076 ◽  
Author(s):  
Carolyn R. Morris ◽  
Christen L. Grassel ◽  
Julia C. Redman ◽  
Jason W. Sahl ◽  
Eileen M. Barry ◽  
...  

ABSTRACTShigellaspecies Gram-negative bacteria which cause a diarrheal disease, known as shigellosis, by invading and destroying the colonic mucosa and inducing a robust inflammatory response. With no vaccine available, shigellosis annually kills over 600,000 children in developing countries. This study demonstrates the utility of combining high-throughput bioinformatic methods within vitroandin vivoassays to provide new insights into pathogenesis. Comparisons ofin vivoandin vitrogene expression identified genes associated with intracellular growth. Additional bioinformatics analyses identified genes that are present inS. flexneriisolates but not in the three otherShigellaspecies. Comparison of these two analyses revealed nine genes that are differentially expressed during invasion and that are specific toS. flexneri. One gene, a DeoR family transcriptional regulator with decreased expression during invasion, was further characterized and is now designatedicgR, forintracellulargrowthregulator. Deletion oficgRcaused no difference in growthin vitrobut resulted in increased intracellular replication in HCT-8 cells. Furtherin vitroandin vivostudies using high-throughput sequencing of RNA transcripts (RNA-seq) of an isogenic ΔicgRmutant identified 34 genes that were upregulated under both growth conditions. This combined informatics and functional approach has allowed the characterization of a gene and pathway previously unknown inShigellapathogenesis and provides a framework for further identification of novel virulence factors and regulatory pathways.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1383-1383
Author(s):  
Kezhi Huang ◽  
Min Yang ◽  
Zengkai Pan ◽  
Florian H. Heidel ◽  
Michaela Scherr ◽  
...  

Abstract Using high-throughput sequencing, an increased number of gene mutations has been identified in cancer. Among the up to hundreds of acquired mutations in cancer clones, only a few cooperating mutations are believed to be needed for initiation of the malignant disease. Recently, we reported a single amino acid substitution at position 676 (N676K) within the FLT3 kinase domain as the sole cause of resistance to PKC412 in one patient with FLT3-ITD associated acute myeloid leukemia (AML). The FLT3-N676K mutation was more recently identified independently in up to 6% of de novo AML patients with inv(16) by other groups. As FLT3-TKD mutations are strongly associated with inv(16) in AML and particularly FLT3-N676K was found almost exclusively in AML patients with inv(16), this prompted us to investigate the transforming activity of FLT3-N676K and to test whether FLT3-N676K would cooperate with inv(16) to promote AML. First, we analyzed in vivo leukemogenesis mediated by FLT3-N676K. Retroviral expression of FLT3-N676K in myeloid 32D cells induced AML in syngeneic C3H/HeJ mice (n=11/13, latency ~8 weeks), with a transforming activity similar to FLT3-ITD (n=8/8), FLT3-TKD D835Y (n=8/9), and FLT3-ITD-N676K (n=9/9) mutations. Three out of 14 C57BL/6J mice transplanted with FLT3-N676K-transduced primary lineage negative (Lin-) bone marrow cells died of acute leukemia (latency of 68, 77, and 273 days), while none of 16 animals in the control groups including FLT3-ITD and CBFß-SMMHC developed any hematological malignancy. Secondly, co-expression of FLT3-N676K and CBFß-SMMHC did not promote acute leukemia in 3 independent experiments using C3H/HeJ and C57BL/6J mice (n=16). So far only 1 out of 11 C57BL/6J mice co-expressing FLT3-N676K and CBFß-SMMHC developed acute leukemia (AML with latency of 166 days). In comparison with FLT3-ITD, FLT3-N676K tended to result in stronger phosphorylation of FLT3, MAPK and AKT, and diseased animals carrying FLT3-N676K demonstrated much lower frequency of leukemic stem cells in the majority of analyzed cases. Importantly, leukemic cells co-expressing FLT3-N676K and CBFß-SMMHC were still highly sensitive to the FLT3 inhibitor AC220. Taken together, we show that FLT3-N676K mutant is potent to transform murine hematopoietic stem/progenitor cells in vivo independently of the inv(16) chimeric gene CBFB-MYH11. This is the first report of acute leukemia induced by an activating FLT3 mutation in C57BL/6J mice. Moreover, our data suggest that targeting FLT3-N676K mutation may be an attractive treatment option for FLT3-N676K-positive patients without concurrent ITD. Our data emphasize more careful analysis of the cooperating network of mutations identified in AML by high-throughput sequencing. This work was supported by DJCLS (grant: 13/22) and the Deutsche Forschungsgemeinschaft (grant: Li 1608/2-1). KH and ZP were supported by the China Scholarship Council (2011638024 and 201406100008). Disclosures Heidel: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document