scholarly journals Multiplexed dynamic imaging of genomic loci in single cells by combined CRISPR imaging and DNA sequential FISH

2017 ◽  
Author(s):  
Yodai Takei ◽  
Sheel Shah ◽  
Sho Harvey ◽  
Lei S. Qi ◽  
Long Cai

ABSTRACTVisualization of chromosome dynamics allows the investigation of spatiotemporal chromatin organization and its role in gene regulation and other cellular processes. However, current approaches to label multiple genomic loci in live cells have a fundamental limitation in the number of loci that can be labelled and uniquely identified. Here we describe an approach we call “track first and identify later” for multiplexed visualization of chromosome dynamics by combining two techniques: CRISPR labeling and DNA sequential fluorescence in situ hybridization (DNA seqFISH). Our approach first labels and tracks chromosomal loci in live cells with the CRISPR system, then barcodes those loci by DNA seqFISH in fixed cells and resolves their identities. We demonstrate our approach by tracking telomere dynamics, identifying 12 unique subtelomeric regions with variable detection efficiencies, and tracking back the telomere dynamics of respective chromosomes in mouse embryonic stem cells.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hatice S. Kaya-Okur ◽  
Steven J. Wu ◽  
Christine A. Codomo ◽  
Erica S. Pledger ◽  
Terri D. Bryson ◽  
...  

Abstract Many chromatin features play critical roles in regulating gene expression. A complete understanding of gene regulation will require the mapping of specific chromatin features in small samples of cells at high resolution. Here we describe Cleavage Under Targets and Tagmentation (CUT&Tag), an enzyme-tethering strategy that provides efficient high-resolution sequencing libraries for profiling diverse chromatin components. In CUT&Tag, a chromatin protein is bound in situ by a specific antibody, which then tethers a protein A-Tn5 transposase fusion protein. Activation of the transposase efficiently generates fragment libraries with high resolution and exceptionally low background. All steps from live cells to sequencing-ready libraries can be performed in a single tube on the benchtop or a microwell in a high-throughput pipeline, and the entire procedure can be performed in one day. We demonstrate the utility of CUT&Tag by profiling histone modifications, RNA Polymerase II and transcription factors on low cell numbers and single cells.


2019 ◽  
Author(s):  
Hatice S. Kaya-Okur ◽  
Steven J. Wu ◽  
Christine A. Codomo ◽  
Erica S. Pledger ◽  
Terri D. Bryson ◽  
...  

AbstractMany chromatin features play critical roles in regulating gene expression. A complete understanding of gene regulation will require the mapping of specific chromatin features in small samples of cells at high resolution. Here we describe Cleavage Under Targets and Tagmentation (CUT&Tag), an enzyme-tethering strategy that provides efficient high-resolution sequencing libraries for profiling diverse chromatin components. In CUT&Tag, a chromatin protein is boundin situby a specific antibody, which then tethers a protein A-Tn5 transposase fusion protein. Activation of the transposase efficiently generates fragment libraries with high resolution and exceptionally low background. All steps from live cells to sequencing-ready libraries can be performed in a single tube on the benchtop or a microwell in a high-throughput pipeline, and the entire procedure can be performed in one day. We demonstrate the utility of CUT&Tag by profiling histone modifications, RNA Polymerase II and transcription factors on low cell numbers and single cells.


2020 ◽  
Author(s):  
Feifei Jia ◽  
Jie Wang ◽  
Yanyan Zhang ◽  
Qun Luo ◽  
Luyu Qi ◽  
...  

<p></p><p><i>In situ</i> visualization of proteins of interest at single cell level is attractive in cell biology, molecular biology and biomedicine, which usually involves photon, electron or X-ray based imaging methods. Herein, we report an optics-free strategy that images a specific protein in single cells by time of flight-secondary ion mass spectrometry (ToF-SIMS) following genetic incorporation of fluorine-containing unnatural amino acids as a chemical tag into the protein via genetic code expansion technique. The method was developed and validated by imaging GFP in E. coli and human HeLa cancer cells, and then utilized to visualize the distribution of chemotaxis protein CheA in E. coli cells and the interaction between high mobility group box 1 protein and cisplatin damaged DNA in HeLa cells. The present work highlights the power of ToF-SIMS imaging combined with genetically encoded chemical tags for <i>in situ </i>visualization of proteins of interest as well as the interactions between proteins and drugs or drug damaged DNA in single cells.</p><p></p>


Author(s):  
Gunnar Zimmermann ◽  
Richard Chapman

Abstract Dual beam FIBSEM systems invite the use of innovative techniques to localize IC fails both electrically and physically. For electrical localization, we present a quick and reliable in-situ FIBSEM technique to deposit probe pads with very low parasitic leakage (Ipara &lt; 4E-11A at 3V). The probe pads were Pt, deposited with ion beam assistance, on top of highly insulating SiOx, deposited with electron beam assistance. The buried plate (n-Band), p-well, wordline and bitline of a failing and a good 0.2 μm technology DRAM single cell were contacted. Both cells shared the same wordline for direct comparison of cell characteristics. Through this technique we electrically isolated the fail to a single cell by detecting leakage between the polysilicon wordline gate and the cell diffusion. For physical localization, we present a completely in-situ FIBSEM technique that combines ion milling, XeF2 staining and SEM imaging. With this technique, the electrically isolated fail was found to be a hole in the gate oxide at the bad cell.


2021 ◽  
Vol 1157 ◽  
pp. 338394
Author(s):  
Xiao-Yue Tang ◽  
Yi-Ming Liu ◽  
Xiao-Lin Bai ◽  
Hao Yuan ◽  
Yi-Kao Hu ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1635
Author(s):  
Ya Su ◽  
Rongxin Fu ◽  
Wenli Du ◽  
Han Yang ◽  
Li Ma ◽  
...  

Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng-Fei Xu ◽  
Ricardo Moraes Borges ◽  
Jonathan Fillatre ◽  
Maraysa de Oliveira-Melo ◽  
Tao Cheng ◽  
...  

AbstractGenerating properly differentiated embryonic structures in vitro from pluripotent stem cells remains a challenge. Here we show that instruction of aggregates of mouse embryonic stem cells with an experimentally engineered morphogen signalling centre, that functions as an organizer, results in the development of embryo-like entities (embryoids). In situ hybridization, immunolabelling, cell tracking and transcriptomic analyses show that these embryoids form the three germ layers through a gastrulation process and that they exhibit a wide range of developmental structures, highly similar to neurula-stage mouse embryos. Embryoids are organized around an axial chordamesoderm, with a dorsal neural plate that displays histological properties similar to the murine embryo neuroepithelium and that folds into a neural tube patterned antero-posteriorly from the posterior midbrain to the tip of the tail. Lateral to the chordamesoderm, embryoids display somitic and intermediate mesoderm, with beating cardiac tissue anteriorly and formation of a vasculature network. Ventrally, embryoids differentiate a primitive gut tube, which is patterned both antero-posteriorly and dorso-ventrally. Altogether, embryoids provide an in vitro model of mammalian embryo that displays extensive development of germ layer derivatives and that promises to be a powerful tool for in vitro studies and disease modelling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazufumi Sakamoto ◽  
Yoshitsune Hondo ◽  
Naoki Takahashi ◽  
Yuhei Tanaka ◽  
Rikuto Sekine ◽  
...  

AbstractWe investigated the dominant rule determining synchronization of beating intervals of cardiomyocytes after the clustering of mouse primary and human embryonic-stem-cell (hES)-derived cardiomyocytes. Cardiomyocyte clusters were formed in concave agarose cultivation chambers and their beating intervals were compared with those of dispersed isolated single cells. Distribution analysis revealed that the clusters’ synchronized interbeat intervals (IBIs) were longer than the majority of those of isolated single cells, which is against the conventional faster firing regulation or “overdrive suppression.” IBI distribution of the isolated individual cardiomyocytes acquired from the beating clusters also confirmed that the clusters’ IBI was longer than those of the majority of constituent cardiomyocytes. In the complementary experiment in which cell clusters were connected together and then separated again, two cardiomyocyte clusters having different IBIs were attached and synchronized to the longer IBIs than those of the two clusters’ original IBIs, and recovered to shorter IBIs after their separation. This is not only against overdrive suppression but also mathematical synchronization models, such as the Kuramoto model, in which synchronized beating becomes intermediate between the two clusters’ IBIs. These results suggest that emergent slower synchronous beating occurred in homogeneous cardiomyocyte clusters as a community effect of spontaneously beating cells.


2021 ◽  
Vol 22 (2) ◽  
pp. 677
Author(s):  
Tausif Altamash ◽  
Wesam Ahmed ◽  
Saad Rasool ◽  
Kabir H. Biswas

Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.


Sign in / Sign up

Export Citation Format

Share Document