scholarly journals mRNA and long non-coding RNA expression profiles in rats reveal inflammatory features in sepsis-associated encephalopathy

2017 ◽  
Author(s):  
WenChong Sun ◽  
Ling Pei ◽  
Zuodi Liang

AbstractBackgroundSepsis-associated encephalopathy (SAE) is related to cognitive sequelae in patients in the intensive care unit (ICU) and can have serious impacts on quality of life after recovery. Although various pathogenic pathways are involved in SAE development, little is known concerning the global role of long non-coding RNAs (lncRNAs) in SAE.MethodsHerein, we employed transcriptome sequencing approaches to characterize the effects of lipopolysaccharide (LPS) on lncRNA expression patterns in brain tissue isolated from Sprague-Dawley (SD) rats with and without SAE. We performed high-throughput transcriptome sequencing after LPS was intraperitoneally injected and predicted targets and functions using bioinformatics tools. Subsequently, we explored the results in detail according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.ResultsLncRNAs were differentially expressed in brain tissue after LPS treatment. After 6 h of LPS exposure, expression of 400 lncRNAs were significantly changed, including an increase in 316 lncRNAs and a decrease in 84 lncRNAs. In addition, 155 mRNAs were differentially expressed, with 84 up-regulated and 71 down-regulated. At 24 h post-treatment, expression of 117 lncRNAs and 57 mRNAs was consistently elevated, while expression of 79 lncRNAs and 21 mRNAs was decreased (change > 1.5-fold; p < 0.05). We demonstrated for the first time that differentially expressed lncRNAs were predicted to be enriched in a post-chaperonin tubulin folding pathway (GO : 007023), which is closely related to the key step in the tubulin folding process.Interestingly, the predicted pathway (KEGG 04360: axon guidance) was significantly changed under the same conditions. These results reveal that LPS might influence the construction and polarization of microtubules, which exert predominant roles in synaptogenesis and related biofunctions in the rodent central nervous system (CNS).ConclusionsAn inventory of LPS-modulated expression profiles from the rodent CNS is an important step toward understanding the function of mRNAs, including lncRNAs, and suggests that microtubule malformation and dysfunction may be involved in SAE pathogenesis.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8293
Author(s):  
Zhibin Zhou ◽  
Bin Han ◽  
Hai Jin ◽  
Aimin Chen ◽  
Lei Zhu

With the aim of exploring expression profiles and biological functions of long non-coding RNA (lncRNA) and mRNAs after spinal cord ischemia-reperfusion injury (SCII), differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in rat spinal cords were identified following SCII through high-throughput RNA sequencing. In total, 1,455 lncRNAs and 6,707 mRNAs were observed to be differentially expressed (—Fold Change— ≥ 2 and P < 0.05) after SCII, including 761 up-regulated and 694 down-regulated lncRNAs, 3,772 up-regulated and 2,935 down-regulated mRNAs. Gene ontology and KEGG pathway analysis showed that the DElncRNAs and DEmRNAs were implicated in many different biological processes and pathways. Further, lncRNA-mRNA co-expression networks were built to explore the potential roles of these DElncRNAs. Our results demonstrate genome-wide lncRNA and mRNA expression patterns in spinal cords after SCII, which may play vital roles in post-SCII pathophysiological processes. These findings are important for future functional research on the lncRNAs involved in SCII and might be critical for providing new insight into identification of potential targets for SCII therapy.


2020 ◽  
Vol 49 (D1) ◽  
pp. D165-D171
Author(s):  
Lianhe Zhao ◽  
Jiajia Wang ◽  
Yanyan Li ◽  
Tingrui Song ◽  
Yang Wu ◽  
...  

Abstract NONCODE (http://www.noncode.org/) is a comprehensive database of collection and annotation of noncoding RNAs, especially long non-coding RNAs (lncRNAs) in animals. NONCODEV6 is dedicated to providing the full scope of lncRNAs across plants and animals. The number of lncRNAs in NONCODEV6 has increased from 548 640 to 644 510 since the last update in 2017. The number of human lncRNAs has increased from 172 216 to 173 112. The number of mouse lncRNAs increased from 131 697 to 131 974. The number of plant lncRNAs is 94 697. The relationship between lncRNAs in human and cancer were updated with transcriptome sequencing profiles. Three important new features were also introduced in NONCODEV6: (i) updated human lncRNA-disease relationships, especially cancer; (ii) lncRNA annotations with tissue expression profiles and predicted function in five common plants; iii) lncRNAs conservation annotation at transcript level for 23 plant species. NONCODEV6 is accessible through http://www.noncode.org/.


2019 ◽  
Vol 8 (7) ◽  
pp. 290-303 ◽  
Author(s):  
H. Li ◽  
H. H. Yang ◽  
Z. G. Sun ◽  
H. B. Tang ◽  
J. K. Min

Objectives The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA). Methods The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both in vitro and in vivo. Results In total, 739 mRNAs, 1152 lncRNAs, and 42 circRNAs were found to be differentially expressed in OA cartilage tissue. Among these, we identified 18 overlapping DEGs and targets of DELs, and the top ten DELs were screened by expression profile analysis as candidate OA-related genes. WISP2, ATF3, and CHI3L1 were significantly increased in both normal versus OA tissues and normal versus interleukin (IL)-1β-induced OA-like cell models, while ADAM12, PRELP, and ASPN were shown to be significantly decreased. Among the identified DELs, we observed higher expression of ENST00000453554 and MSTRG.99593.3, and lower expression of MSTRG.44186.2 and NONHSAT186094.1 in normal versus OA cells and tissues. Conclusion This study revealed expression patterns of coding and noncoding RNAs in OA cartilage, which added sets of genes and noncoding RNAs to the list of candidate diagnostic biomarkers and therapeutic agents for OA patients. Cite this article: H. Li, H. H. Yang, Z. G. Sun, H. B. Tang, J. K. Min. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res 2019;8:290–303. DOI: 10.1302/2046-3758.87.BJR-2018-0297.R1.


2021 ◽  
Author(s):  
Wei Chen ◽  
Peiying Teng ◽  
Heng Yang ◽  
Jing Li ◽  
Fan Yang

Abstract Hand, foot, and mouth disease caused by Coxsackievirus B5 (CV-B5) poses considerable threats to the health of infants especially in neurological damage. And the long noncoding RNAs (lncRNAs) act pivotal factors in regulating and participating in virus-host interactions. However, the role of lncRNAs in CV-B5-host interactions has not yet been elucidated. In this study, we used the RNA sequencing to determine the expression profiles of lncRNAs in CV-B5 infected human rhabdomyosarcoma (RD) and SH-SY5Y cells. Our results identified that in the differentially expressed lncRNAs a total of 508 up-regulated and 760 down-regulated lncRNAs in RD cell, with 46.2% were lincRNAs, 28.6% were anti-sense lncRNAs, 24.1% were sense overlapping lncRNAs, and 1.0% were sense intronic lncRNAs. Moreover, 792 lncRNAs were significantly increased and 811 lncRNAs were greatly decreased in SH-SY5Y cell including 48.6% were lincRNAs, 34.7% were anti-sense lncRNAs, 16.0% were sense overlapping lncRNAs, and 0.8% were sense intronic lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that the differentially expressed lncRNAs participated in the occurrence of disease in RD cell and associated with signaling pathway in SH-SY5Y cell after CVB5 infection respectively. In addition, similar results were obtained when seven lncRNAs were selected for validation using RT-qPCR assays. Moreover, we conducted the candidate lncRNA-IL12A secondary structures and found that it inhibits viral replication through Wnt signaling pathway. Our results reveal that lncRNAs can become a possible novel molecular target for the prevention and treatment of CV-B5 infection, and provided information for distinguishing neurogenic CV-B5 disease.


Rheumatology ◽  
2020 ◽  
Author(s):  
Bin Cai ◽  
Jingyi Cai ◽  
Zhihua Yin ◽  
Xiaoyue Jiang ◽  
Chao Yao ◽  
...  

Abstract Objective The long non-coding RNA plays an important role in inflammation and autoimmune diseases. The aim of this study is to screen and identify abnormally expressed lncRNAs in peripheral blood neutrophils of SLE patients as novel biomarkers and to explore the relationship between lncRNAs levels and clinical features, disease activity and organ damage. Methods RNA-seq technology was used to screen differentially expressed lncRNAs in neutrophils from SLE patients and healthy donors. Based on the results of screening, candidate lncRNA levels in neutrophils of 88 SLE patients, 35 other connective disease controls, and 78 healthy controls were qualified by real-time quantitative polymerase chain reaction. Results LncRNA expression profiling revealed 360 up-regulated lncRNAs and 224 down-regulated lncRNAs in neutrophils of SLE patients when compared with healthy controls. qPCR assay validated that the expression of Lnc-FOSB-1:1 was significantly decreased in neutrophils of SLE patients when compared with other CTD patients or healthy controls. It correlated negatively with SLE Disease Activity Index 2000 (SLEDAI-2K) score (r = −0.541, P &lt; 0.001) and IFN scores (r = −0.337, P = 0.001). More importantly, decreased Lnc-FOSB-1:1 expression was associated with lupus nephritis. Lower baseline Lnc-FOSB-1:1 level was associated with higher risk of future renal involvement (within an average of 2.6 years) in patients without renal disease at baseline (P = 0.019). Conclusion LncRNA expression profile in neutrophils of SLE patients revealed differentially expressed lncRNAs. Validation study on Lnc-FOSB-1:1 suggest that it is a potential biomarker for prediction of near future renal involvement.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2768
Author(s):  
Xinjian Li ◽  
Xuelei Han ◽  
Caixia Sun ◽  
Gaiying Li ◽  
Kejun Wang ◽  
...  

Epidemic diseases cause great economic loss in pig farms each year; some of these diseases are characterized mainly in the spleen, but mRNA and lncRNA (long non-coding RNA) expression networks in developing Yorkshire pig spleens remain obscure. Here, we profiled the systematic characters of mRNA and lncRNA repertoires in three groups of spleens from nine Yorkshire pigs, each three aged at seven days, 90 days, and 180 days. By using a precise mRNA and lncRNA identification pipeline, we identified 19,647 genes and 219 known and 3219 putative lncRNA transcripts; 1729 genes and 64 lncRNAs therein were found to express differentially. The gene expression characteristics of genes and lncRNAs were found to be basically fixed before 90 days after birth. Three large gene expression modules were detected. The enrichment analyses of differentially expressed genes and the potential target genes of differentially expressed lncRNAs both displayed the crucial roles of up-regulation in immune activation and hematopoiesis, and down-regulation in cell replication and division in 90 days and 180 days compared to seven days. ENSSSCT00000001325 was the only lncRNA transcript that existed in the three groups. CDK1, PCNA, and PLK were detected to be node genes that varied with age. This study contributes to a further understanding of mRNA and lncRNA expression in different developmental pig spleens.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Linlin Sai ◽  
Xuejie Qi ◽  
Gongchang Yu ◽  
Juan Zhang ◽  
Yuxin Zheng ◽  
...  

Abstract Background Exposure to respirable crystalline silica (RCS) can induce accelerated silicosis (AS), a form of silicosis that is more progressive and severe form of silicosis. In this project we aimed to assess processes of silicosis in rats exposed to RCS with focus on the regulation of long noncoding RNAs (lncRNAs). Results The results showed that RCS induced acute inflammatory response as indicated by the appearance of inflammatory cells in the lung from the first day and peaked on day 7 of exposure. The fibroblasts appeared along with the inflammatory cells decreasing gradually on day 14. Extensive fibrosis appeared in the lung tissue, and silicon nodules were getting larger on day 28. Interestingly, the number of altered lncRNAs increased with the exposure time with 193, 424, 455, 421 and 682 lncRNAs on day 1, 7, 14, 21, and 28 after exposure, respectively. We obtained 285 lncRNAs with five significant temporal expression patterns whose expressions might correlate with severity of silicosis. KEGG analysis showed that lncRNAs from short time-series expression miner (STEM)-derived data mainly involved in 17 pathways such as complement and coagulation cascades. Conclusions The differential expression profiles of lncRNAs may be potential biomarkers in silicosis through modulating expressions of their relevant genes in lungs of rat and thus warrant further investigation.


2017 ◽  
Author(s):  
Annamaria Morotti ◽  
Irene Forno ◽  
Valentina Andre ◽  
Andrea Terrasi ◽  
Chiara Verdelli ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoning Wang ◽  
Xingfen Wang ◽  
Yan Zhang ◽  
Jun Yang ◽  
Zhikun Li ◽  
...  

Abstract Background Verticillium wilt is a widespread and destructive disease, which causes serious loss of cotton yield and quality. Long non-coding RNA (lncRNA) is involved in many biological processes, such as plant disease resistance response, through a variety of regulatory mechanisms, but their possible roles in cotton against Verticillium dahliae infection remain largely unclear. Results Here, we measured the transcriptome of resistant G. hirsutum following infection by V. dahliae and 4277 differentially expressed lncRNAs (delncRNAs) were identified. Localization and abundance analysis revealed that delncRNAs were biased distribution on chromosomes. We explored the dynamic characteristics of disease resistance related lncRNAs in chromosome distribution, induced expression profiles, biological function, and these lncRNAs were divided into three categories according to their induced expression profiles. For the delncRNAs, 687 cis-acting pairs and 14,600 trans-acting pairs of lncRNA-mRNA were identified, which indicated that trans-acting was the main way of Verticillium wilt resistance-associated lncRNAs regulating target mRNAs in cotton. Analyzing the regulation pattern of delncRNAs revealed that cis-acting and trans-acting lncRNAs had different ways to influence target genes. Gene Ontology (GO) enrichment analysis revealed that the regulatory function of delncRNAs participated significantly in stimulus response process, kinase activity and plasma membrane components. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that delncRNAs participated in some important disease resistance pathways, such as plant-pathogen interaction, alpha-linolenic acid metabolism and plant hormone signal transduction. Additionally, 21 delncRNAs and 10 target genes were identified as being involved in alpha-linolenic acid metabolism associated with the biosynthesis of jasmonic acid (JA). Subsequently, we found that GhlncLOX3 might regulate resistance to V. dahliae through modulating the expression of GhLOX3 implicated in JA biosynthesis. Further functional analysis showed that GhlncLOX3-silenced seedlings displayed a reduced resistance to V. dahliae, with down-regulated expression of GhLOX3 and decreased content of JA. Conclusion This study shows the dynamic characteristics of delncRNAs in multiaspect, and suggests that GhlncLOX3-GhLOX3-JA network participates in response to V. dahliae invasion. Our results provide novel insights for genetic improvement of Verticillium wilt resistance in cotton using lncRNAs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1901
Author(s):  
Brielle Jones ◽  
Chaoyang Li ◽  
Min Sung Park ◽  
Anne Lerch ◽  
Vimal Jacob ◽  
...  

Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.


Sign in / Sign up

Export Citation Format

Share Document