scholarly journals Dynamic assessing silica particle-induced pulmonary fibrosis and associated regulation of long non-coding RNA expression in Wistar rats

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Linlin Sai ◽  
Xuejie Qi ◽  
Gongchang Yu ◽  
Juan Zhang ◽  
Yuxin Zheng ◽  
...  

Abstract Background Exposure to respirable crystalline silica (RCS) can induce accelerated silicosis (AS), a form of silicosis that is more progressive and severe form of silicosis. In this project we aimed to assess processes of silicosis in rats exposed to RCS with focus on the regulation of long noncoding RNAs (lncRNAs). Results The results showed that RCS induced acute inflammatory response as indicated by the appearance of inflammatory cells in the lung from the first day and peaked on day 7 of exposure. The fibroblasts appeared along with the inflammatory cells decreasing gradually on day 14. Extensive fibrosis appeared in the lung tissue, and silicon nodules were getting larger on day 28. Interestingly, the number of altered lncRNAs increased with the exposure time with 193, 424, 455, 421 and 682 lncRNAs on day 1, 7, 14, 21, and 28 after exposure, respectively. We obtained 285 lncRNAs with five significant temporal expression patterns whose expressions might correlate with severity of silicosis. KEGG analysis showed that lncRNAs from short time-series expression miner (STEM)-derived data mainly involved in 17 pathways such as complement and coagulation cascades. Conclusions The differential expression profiles of lncRNAs may be potential biomarkers in silicosis through modulating expressions of their relevant genes in lungs of rat and thus warrant further investigation.

2017 ◽  
Author(s):  
WenChong Sun ◽  
Ling Pei ◽  
Zuodi Liang

AbstractBackgroundSepsis-associated encephalopathy (SAE) is related to cognitive sequelae in patients in the intensive care unit (ICU) and can have serious impacts on quality of life after recovery. Although various pathogenic pathways are involved in SAE development, little is known concerning the global role of long non-coding RNAs (lncRNAs) in SAE.MethodsHerein, we employed transcriptome sequencing approaches to characterize the effects of lipopolysaccharide (LPS) on lncRNA expression patterns in brain tissue isolated from Sprague-Dawley (SD) rats with and without SAE. We performed high-throughput transcriptome sequencing after LPS was intraperitoneally injected and predicted targets and functions using bioinformatics tools. Subsequently, we explored the results in detail according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.ResultsLncRNAs were differentially expressed in brain tissue after LPS treatment. After 6 h of LPS exposure, expression of 400 lncRNAs were significantly changed, including an increase in 316 lncRNAs and a decrease in 84 lncRNAs. In addition, 155 mRNAs were differentially expressed, with 84 up-regulated and 71 down-regulated. At 24 h post-treatment, expression of 117 lncRNAs and 57 mRNAs was consistently elevated, while expression of 79 lncRNAs and 21 mRNAs was decreased (change > 1.5-fold; p < 0.05). We demonstrated for the first time that differentially expressed lncRNAs were predicted to be enriched in a post-chaperonin tubulin folding pathway (GO : 007023), which is closely related to the key step in the tubulin folding process.Interestingly, the predicted pathway (KEGG 04360: axon guidance) was significantly changed under the same conditions. These results reveal that LPS might influence the construction and polarization of microtubules, which exert predominant roles in synaptogenesis and related biofunctions in the rodent central nervous system (CNS).ConclusionsAn inventory of LPS-modulated expression profiles from the rodent CNS is an important step toward understanding the function of mRNAs, including lncRNAs, and suggests that microtubule malformation and dysfunction may be involved in SAE pathogenesis.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8293
Author(s):  
Zhibin Zhou ◽  
Bin Han ◽  
Hai Jin ◽  
Aimin Chen ◽  
Lei Zhu

With the aim of exploring expression profiles and biological functions of long non-coding RNA (lncRNA) and mRNAs after spinal cord ischemia-reperfusion injury (SCII), differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in rat spinal cords were identified following SCII through high-throughput RNA sequencing. In total, 1,455 lncRNAs and 6,707 mRNAs were observed to be differentially expressed (—Fold Change— ≥ 2 and P < 0.05) after SCII, including 761 up-regulated and 694 down-regulated lncRNAs, 3,772 up-regulated and 2,935 down-regulated mRNAs. Gene ontology and KEGG pathway analysis showed that the DElncRNAs and DEmRNAs were implicated in many different biological processes and pathways. Further, lncRNA-mRNA co-expression networks were built to explore the potential roles of these DElncRNAs. Our results demonstrate genome-wide lncRNA and mRNA expression patterns in spinal cords after SCII, which may play vital roles in post-SCII pathophysiological processes. These findings are important for future functional research on the lncRNAs involved in SCII and might be critical for providing new insight into identification of potential targets for SCII therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Binghui Zhang ◽  
Jiahan Yang ◽  
Gang Gu ◽  
Liao Jin ◽  
Chengliang Chen ◽  
...  

Leaf senescence is an important process of growth and development in plant, and it is a programmed decline controlled by a series of genes. In this study, the biochemical properties and transcriptome at five maturity stages (M1∼M5) of tobacco leaves were analyzed to reveal the dynamic changes in leaf senescence of tobacco. A total of 722, 1,534, 3,723, and 6,933 genes were differentially expressed (DEG) between M1 and M2, M1 and M3, M1 and M4, and M1 and M5, respectively. Significant changes of nitrogen, sugars, and the DEGs related to metabolite accumulation were identified, suggesting the importance of energy metabolism during leaf senescence. Gene Ontology (GO) analysis found that DEGs were enriched in biosynthetic, metabolic, photosynthesis, and redox processes, and especially, the nitrogen metabolic pathways were closely related to the whole leaf senescence process (M1∼M5). All the DEGs were grouped into 12 expression profiles according to their distinct expression patterns based on Short Time-series Expression Miner (STEM) software analysis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that these DEGs were enriched in pathways of carbon metabolism, starch and sucrose metabolism, nitrogen metabolism, and photosynthesis among these expression profiles. A total of 30 core genes were examined by Weight Gene Co-expression Network Analysis (WGCNA), and they appeared to play a crucial role in the regulatory of tobacco senescence. Our results provided valuable information for further functional investigation of leaf senescence in plants.


2017 ◽  
Author(s):  
Annamaria Morotti ◽  
Irene Forno ◽  
Valentina Andre ◽  
Andrea Terrasi ◽  
Chiara Verdelli ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoning Wang ◽  
Xingfen Wang ◽  
Yan Zhang ◽  
Jun Yang ◽  
Zhikun Li ◽  
...  

Abstract Background Verticillium wilt is a widespread and destructive disease, which causes serious loss of cotton yield and quality. Long non-coding RNA (lncRNA) is involved in many biological processes, such as plant disease resistance response, through a variety of regulatory mechanisms, but their possible roles in cotton against Verticillium dahliae infection remain largely unclear. Results Here, we measured the transcriptome of resistant G. hirsutum following infection by V. dahliae and 4277 differentially expressed lncRNAs (delncRNAs) were identified. Localization and abundance analysis revealed that delncRNAs were biased distribution on chromosomes. We explored the dynamic characteristics of disease resistance related lncRNAs in chromosome distribution, induced expression profiles, biological function, and these lncRNAs were divided into three categories according to their induced expression profiles. For the delncRNAs, 687 cis-acting pairs and 14,600 trans-acting pairs of lncRNA-mRNA were identified, which indicated that trans-acting was the main way of Verticillium wilt resistance-associated lncRNAs regulating target mRNAs in cotton. Analyzing the regulation pattern of delncRNAs revealed that cis-acting and trans-acting lncRNAs had different ways to influence target genes. Gene Ontology (GO) enrichment analysis revealed that the regulatory function of delncRNAs participated significantly in stimulus response process, kinase activity and plasma membrane components. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that delncRNAs participated in some important disease resistance pathways, such as plant-pathogen interaction, alpha-linolenic acid metabolism and plant hormone signal transduction. Additionally, 21 delncRNAs and 10 target genes were identified as being involved in alpha-linolenic acid metabolism associated with the biosynthesis of jasmonic acid (JA). Subsequently, we found that GhlncLOX3 might regulate resistance to V. dahliae through modulating the expression of GhLOX3 implicated in JA biosynthesis. Further functional analysis showed that GhlncLOX3-silenced seedlings displayed a reduced resistance to V. dahliae, with down-regulated expression of GhLOX3 and decreased content of JA. Conclusion This study shows the dynamic characteristics of delncRNAs in multiaspect, and suggests that GhlncLOX3-GhLOX3-JA network participates in response to V. dahliae invasion. Our results provide novel insights for genetic improvement of Verticillium wilt resistance in cotton using lncRNAs.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2006
Author(s):  
Hongyu Liu ◽  
Ibrar Muhammad Khan ◽  
Huiqun Yin ◽  
Xinqi Zhou ◽  
Muhammad Rizwan ◽  
...  

The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls’ testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.


2016 ◽  
Vol 35 (6) ◽  
pp. 3185-3197 ◽  
Author(s):  
CHUNLIANG SHANG ◽  
WENHUI ZHU ◽  
TIANYU LIU ◽  
WEI WANG ◽  
GUANGXIN HUANG ◽  
...  

Author(s):  
Longlong Luo ◽  
Nupur khera ◽  
Andor Pivarcsi ◽  
Ankit Srivastava ◽  
Lorenzo Pasquali ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5997 ◽  
Author(s):  
Zunqiang Yan ◽  
Xiaoyu Huang ◽  
Wenyang Sun ◽  
Qiaoli Yang ◽  
Hairen Shi ◽  
...  

Background Clostridium perfringens (C. perfringens) type C is the most common bacteria causing piglet diarrheal disease and it greatly affects the economy of the global pig industry. The spleen is an important immune organ in mammals; it plays an irreplaceable role in resisting and eradicating pathogenic microorganisms. Based on different immune capacity in piglets, individuals display the resistance and susceptibility to diarrhea caused by C. perfringens type C. Recently, long non-coding RNA (lncRNA) and mRNA have been found to be involved in host immune and inflammatory responses to pathogenic infections. However, little is known about spleen transcriptome information in piglet diarrhea caused by C. perfringens type C. Methods Hence, we infected 7-day-old piglets with C. perfringens type C to lead to diarrhea. Then, we investigated lncRNA and mRNA expression profiles in spleens of piglets, including control (SC), susceptible (SS), and resistant (SR) groups. Results As a result, 2,056 novel lncRNAs and 2,417 differentially expressed genes were found. These lncRNAs shared the same characteristics of fewer exons and shorter length. Bioinformatics analysis identified that two lncRNAs (ALDBSSCT0000006918 and ALDBSSCT0000007366) may be involved in five immune/inflammation-related pathways (such as Toll-like receptor signaling pathway, MAPK signaling pathway, and Jak-STAT signaling pathway), which were associated with resistance and susceptibility to C. perfringens type C infection. This study contributes to the understanding of potential mechanisms involved in the immune response of piglets infected with C. perfringens type C.


Sign in / Sign up

Export Citation Format

Share Document